CHAPTER 6

Association Rules

6.1 INTRODUCTION

6.2 LARGE ITEMSETS

6.3 BASIC ALGORITHMS

6.4 PARALLEL AND DISTRIBUTED ALGORITHMS
6.5 COMPARING APPROACHES

6.6 INCREMENTAL RULES

6.7 ADVANCED ASSOCIATION RULE TECHNQIUES
6.8 MEASURING THE QUALITY OF RULES

6.9 EXERCISES

6.10 BIBLIOGRAPHIC NOTES

6.1 INTRODUCTION

The purchasing of one product when another product is purchased represents an asso-
ciation rule. Association rules are frequently used by retail stores to assist in marketing,
advertising, floor placement, and inventory control. Although they have direct applicability
to retail businesses, they have been used for other purposes as well, including predicting
faults in telecommunication networks. Association rules are used to show the relationships
between data items. These uncovered relationships are not inherent in the data, as with
functional dependencies, and they do not represent any sort of causality or correlation.
Instead, association rules detect common usage of items. Example 6.1 illustrates this.

EXAMPLE 6.1

A grocery store chain keeps a record of weekly transactions where each transaction
represents the items bought during one cash register transaction. The executives of the
chain receive a summarized report of the transactions indicating what types of items have
sold at what quantity. In addition, they periodically request information about what items
are commonly purchased together. They find that 100% of the time that PeanutButter
is purchased, so is Bread. In addition, 33.3% of the time PeanutButter is purchased,
Jelly is also purchased. However, PeanutButter exists in only about 50% of the overall
transactions.

A database in which an association rule is to be found is viewed as a set
of tuples, where each tuple contains a set of items. For example, a tuple could be
{PeanutButter, Bread, Jelly}, which consists of the three items: peanut butter, bread, and

164

1 asso-
keting,
ability
licting
nships
s with
lation.
s.

—

action
of the
have
items
Jutter
ased,
verall

1 set
d be
~and

Section 6.1 Introduction 165

jelly. Keeping grocery story cash register transactions in mind, each item represents
an item purchased, while each tuple is the list of items purchased at one time.
In the simplest cases, we are not interested in quantity or cost, so these may be
removed from the records before processing. Table 6.1 is used throughout this chapter
to illustrate different algorithms. Here there are five transactions and five items:
{Beer, Bread, Jelly, Milk, PeanutButter}. Throughout this chapter we list items in alpha-
betical order within a transaction. Although this is not required, algorithms often assume
that this sorting is done in a preprocessing step.

The support of an item (or set of items) is the percentage of transactions in which
that item (or items)-accurs. Table 6.2 shows the support for all subsets of items from our
total set. As seen, there is an exponential growth in the sets of items. In this case we
could have 31 sets of items from the original set of five items (ignoring the empty set).
This explosive growth in potential sets of items is an issue that most association

TABLE 6.1: Sample Data to Illustrate Association Rules

Transaction Items
t Bread, Jelly, PeanutButter
t Bread, PeanutButter
13 Bread, Milk, PeanutButter
14 Beer, Bread
15 Beer, Milk

TABLE 6.2: Support of All Sets of Items Found in Table 6.1

Set Support Set Support
Beer 40 Beer, Bread, Milk 0
Bread 80 Beer, Bread, PeanutButter 0
Jelly 20 Beer, Jelly, Milk 0
Milk 40 Beer, Jelly, PeanutButter 0
PeanutButter 60 Beer, Milk, PeanutButter 0
Beer, Bread 20 Bread, Jelly, Milk 0
Beer, Jelly 0 Bread, Jelly, PeanutButter 20
Beer, Milk 20 Bread, Milk, PeanutButter 20
Beer, PeanutButter 0 Jelly, Milk, PeanutButter 0
Bread, Jelly 20 Beer, Bread, Jelly, Milk 0
Bread, Milk 20 Beer, Bread, Jelly, PeanutButter 0
Bread, PeanutButter 60 Beer, Bread, Milk, PeanutButter 0
Jelly, Milk 0 Beer, Jelly, Milk, PeanutButter 0
Jelly, PeanutButter 20 Bread, Jelly, Milk, PeanutButter 0
Milk, PeanutButter 20 Beer, Bread, Jelly, Milk, PeanutButter 0
Beer, Bread, Jelly 0

166 Chapter 6 Association Rules

rule algorithms must contend with, as the conventional approach to generating association -

rules is in actuality counting the occurrence of sets of items in the transaction database.

Note that we are dealing with categorical data. Given a target domain, the under-
lying set of items usually is known, so that an encoding of the transactions could be
performed before processing. As we will see, however, association rules can be applied
to data domains other than categorical.

DEeFINITION 6.1. Given a set of items I = {I1, Iay - Im} and a database of
transactions D = {t1, 12, -« > tn} where t; = (L, Iin, - - -, Lik} and I;; € I, an
association rule is an implication of the form X = ¥ where X, Y C I are sets of
items called itemsets and X NY = 0.

DEFINITION 6.2. The support (s) for an association rule X = Y is the percentage
of transactions in the database that contain X UY.

DeFINITION 6.3. The confidence or strength («) for an association rule X = Y
is the ratio of the number of transactions that contain X UY to the number of
transactions that contain X.

A formal definition, from [AIS93], is found in Definition 6.1. We generally are not
interested in all implications but only those that are important. Here importance usually
is measured by two features called support and confidence as defined in Definitions
6.2 and 6.3. Table 6.3 shows the support and confidence for several association rules,
including those from Example 6.1.

The selection of association rules is based on these two values as described in
the definition of the association rule problem in Definition 6.4. Confidence measures the
strength of the rule, whereas support measures how often it should occur in the database.
Typically, large confidence values and a smaller support are used. For example, look at
Bread = PeanutButter in Table 6.3. With o = 75%, this indicates that this rule holds
75% of the time that it could. That is, 3/4 times that Bread occurs, so does PeanutButter.
This is a stronger rule than Jelly = Milk because there are no times Milk is purchased
when Jelly is bought. An advertising executive probably would not want to base an
advertising campaign on the fact that when a person buys Jelly he also buys Milk.
Lower values for support may be allowed as support indicates the percentage of time
the rule occurs throughout the database. For example, with Jelly = PeanutButter, the
confidence is 100% but the support is only 20%. It may be the case that this association

TABLE 6.3: Support and Confidence for Some Association Rules

X=7Y s o
Bread = PeanutButter 60% 75%
PeanutButter = Bread 60% 100%
Beer = Bread 20% 50%
PeanutButter = Jelly 20% 33.3%
Jelly = PeanutButter 20% 100%

Jelly = Milk 0% 0%

Section 6.2 Large Itemsets 167

ion rule exists only in 20% of the transactions, but when the antecedent Jelly occurs, the
ase. consequent always occurs. Here an advertising strategy targeted to people who purchase
ler- Jelly would be appropriate.

be

The discussion so far has centered around the use of association rules in the market

ied basket area. Example 6.2 illustrates a use for association rules in another domain: telecom-
munications. This example, although quite simplified from the similar real-world problem,
1 illustrates the importance of association rules in other domains and the fact that support
pot need not always be high.
an
s of

EXAMPLE 6.2

A telephone company must ensure that a high percentage of all phone calls are made
= within a certain period of time. Since each phone call must be routed through many

switches, it is imperative that each switch work correctly. The failure of any switch
} could result in a call not being completed or being completed in an unacceptably long
! period of time. In this environment, a potential data mining problem would be to predict
a failure of a node. Then, when the node is predicted to fail, measures can be taken by
the phone company to route all calls around the node and replace the switch. To this

i

- ‘ end, the company keeps a history of calls through a switch. Each call history indicates
- "f" the success or failure of the switch, associated timing, and error indication. The history
s } contains results of the last and prior traffic through the switch. A transaction of the type
N (success, failure) indicates that the most recent call could not be handled successfully,

while the call before that was handled fine. Another transaction (ERR1, failure) indicates
- ‘ that the previous call was handled but an error occurred, ERR1. This error could be
k. something like excessive time. The data mining problem can then be stated as finding
association rules of the type X = Failure. If these types of rules occur with a high
confidence, we could predict failure and immediately take the node off-line. Even though
the support might be low because the X condition does not frequently occur, most often
when it occurs, the node fails with the next traffic.

DEFINITION 6.4. Given a set of items I = {I, I, ..., I,} and a database of
transactions D = {t1,1,...,t,} where t; = {I;1, I;2, ..., I;x} and Iij € I, the
association rule problem is to identify all association rules X = Y with a mini-
mum support and confidence. These values (s,) are given as input to the problem.

The efficiency of association rule algorithms usually is discussed with respect to the

number of scans of the database that are required and the maximum number of itemsets
that must be counted.

6.2 LARGE ITEMSETS

The most common approach to finding association rules is to break up the problem into
two parts:

1. Find large itemsets as defined in Definition 6.5.
|
2. Generate rules from frequent itemsets. 1

An itemset is any subset of the set of all items, /.

168 Chapter 6 Association Rules

DEFINITION 6.5. A large (frequent) itemset is an itemset whose number of
occurrences is above a threshold, s. We use the notation L to indicate the complete
set of large itemsets and [to indicate a specific large itemset.

Once the large itemsets have been found, we know that any interesting association
rule, X = Y, must have X UY in this set of frequent itemsets. Note that the subset of any
large itemset is also large. Because of the large number of notations used in association
rule algorithms, we summarize them in Table 6.4. When a specific term has a subscript,
this indicates the size of the set being considered. For example, [; is a large itemset of
size k. Some algorithms divide the set of transactions into partitions. In this case, we use
p to indicate the number of partitions and a superscript to indicate which partition. For
example, D' is the i’ partition of D.

Finding large itemsets generally is quite easy but very costly. The naive approach
would be to count all itemsets that appear in any transaction. Given a set of items of size
m, there are 2™ subsets. Since we are not interested in the empty set, the potential number
of large itemsets is then 2 — 1. Because of the explosive growth of this number, the
challenge of solving the association rule problem is often viewed as how to efficiently
determine all large itemsets. (When m = 5, there are potentially 31 itemsets. When
m = 30, this becomes 1073741823.) Most association rule algorithms are based on
smart ways to reduce the number of itemsets to be counted. These potentially large
itemsets are called candidates, and the set of all counted (potentially large) itemsets is
the candidate itemset (c). One performance measure used for association rule algorithms
is the size of C. Another problem to be solved by association rule algorithms is what
data structure is to be used during the counting process. As we will see, several have
been proposed. A trie or hash tree are common.

When all large itemsets are found, generating the association rules is straightfor-
ward. Algorithm 6.1, which is modified from [AS94], outlines this technique. In this
algorithm we use a function support, which returns the support for the input itemset.

TABLE 6.4: Association Rule Notation

Term Description

D Database of transactions
t; Transaction in D

s Support

o Confidence

X,Y Itemsets

X=Y Association rule

L Set of large itemsets

I Large itemset in L

C Set of candidate itemsets

p Number of partitions

E
\

Section 6.3 Basic Algorithms 169

mber of ALGORITHM 6.1
omplete Input:
D //Database of transactions
I //Items
- L //Large itemsets
sociation < A mpe
2 qf E}ny o //Confidence
soclation output:
abscript, R //Association Rules satisfying s and «
=mset of ARGen algorithm:
. we use R=0; ~
ion. For for each 1€ L do
for each xC 1 such that x# @ do
pproach if —:%%% >« then
o R=RU{x= (1-)};
number !
ber, the
Ticiently | To illustrate this algorithm, again refer to the data in Table 6.1 with associated
s. When i supports shown in Table 6.2. Suppose that the input support and confidence are s = 30%
ased on and o = 50%, respectively. Using this value of s, we obtain the following set of large
v large i itemsets:
msets 1S i
-orithms ‘ L = {{Beer}, {Bread}, {Milk}, {PeanutButter}{Bread, PeanutButter}}.
'l_; ::j; We now look at what association rules are generated from the last large itemset. Here [=
{Bread, PeanutButter}. There are two nonempty subsets of /: {Bread} and {PeanutButter}.

1 With the first one we see:
mshtfor- !
_ In this L support({Bread, PeanutButter}) ~ @ _ 075
mmset. ‘ support({Bread}) - B

ﬁ This means that the confidence of the association rule Bread = PeanutButter is 75%,

L' just as is seen in Table 6.3. Since this is above «, it is a valid association rule and is
‘ added to R. Likewise with the second large itemset

“\ support({Bread, PeanutButter}) 60
i support({PeanutButter}) 60

This means that the confidence of the association rule PeanutButter = Bread is 100%,
and this is a valid association rule.

All of the algorithms discussed in subsequent sections look primarily at ways to
efficiently discover large itemsets.

6.3 BASIC ALGORITHMS
6.3.1 Apriori Algorithm

The Apriori algorithm is the most well known association rule algorithm and is used
in most commercial products. It uses the following property, which we call the large
itemset property:

Any subset of a large itemset must be large.

g

