

Getting Started With Use Case
Modeling

An Oracle White Paper

May 2007

Getting Started With Use Case Modeling Page 2

Getting Started With Use Case Modeling

INTRODUCTION .. 3
WHAT IS USE CASE MODELING ... 3

Use Cases ... 3
Actors ... 4

A TEXT FORM.. 4
Scenarios .. 4
Extensions.. 5
Use Case Properties.. 6
Use Case Templates.. 6

SCOPE AND LEVEL... 8
Design Scope... 8
Business and System Use Cases.. 8
Use Case Level .. 8

PRECONDITIONS AND GUARANTEES .. 9
USE CASE DIAGRAMS .. 10

Actors and Use Cases... 10
Use Case Inclusions.. 10
Use Case Extensions .. 11
Generalized Use Cases and Actors .. 12

ORGANIZING USE CASES.. 12
WRITING IN ITERATIONS.. 14
RELATION WITH OTHER UML ARTIFACTS 16
USE CASES VERSUS FUNCTION HIERARCHY............................... 16
MORE INFORMATION... 17

Getting Started With Use Case Modeling Page 3

Getting Started With Use Case Modeling

INTRODUCTION

These days use case modeling is often associated with UML, although it has been

introduced before UML existed. Ivar Jackobson has been credited with inventing

use cases which appeared in the object-oriented community somewhere in 1992.

If you have seen even the smallest thing

of use cases, it is likely that this has

been a use case diagram with a figure

like shape from which an line goes to an

ellipse with a few words in it.

“This is not a use case”

And you may have been told that this is how functional specifications are created

in UML. Everyone who has ever written functional specifications that consisted of

pages of text will then at least raise an eyebrow and think this cannot be true. And

you will be very right to do so!

In this paper it will be explained what use case modeling really is about and you

will find out that it is fundamentally a text form for which a use case diagram is not

much more than an index. It will also describe an effective way to create use cases

and to record them with JDeveloper 10.1.3, and Oracle Consulting’s best practices

with that.

For those familiar with traditional Structured Analysis use case modeling is

compared with using a Function Hierarchy.

The contents of this paper are greatly inspired by the book “Writing Effective Use

Cases” from Alistair Cockburn. Whenever you start creating uses cases on your

project it is highly recommended you keep his book at hand.

WHAT IS USE CASE MODELING

The core items of use case modeling are use cases and actors.

Use Cases

Whenever we discuss the requirements of a system we recognize one or more

people or things that have an interest in the behavior of that system. These are

called the stakeholders of that system.

Getting Started With Use Case Modeling Page 4

A use case describes how the system should respond under various conditions to

a request from one of the stakeholders to deliver a specific goal. This is primarily

done in the form of a scenario that describes a sequence of steps. Each use case

captures a “contract” for the behavior of the System under Discussion (SuD) to

deliver a single goal.

Ultimately, the functional requirements of a system can be captured by describing

how the SuD should respond to all possible requests as a series of use cases. In this

way you can specify an important part of, but not all requirements. Requirements

you cannot capture this way are non-functional requirements, business rules, the

user interface and other requirements that are not suitable to be described as a

scenario.

Actors

An actor is anyone or anything with behavior. The primary actor is the

stakeholder that interacts with the SuD to achieve a specific goal. The primary

actor is often, but not always the one who triggers the use case. It is not, when the

use case is actually triggered by an actor who does this on behalf of the real

primary actor, or when the use case is triggered by time.

Sometimes an (external) actor needs to provide a service to the SuD. Such an actor

is called a supporting actor. An actor can be the primary actor for one use case

and the supporting actor for another.

In general an actor is a role rather than a specific person, job title or thing,

although incidentally it can be. The SuD is also an actor. Not every stakeholder will

directly interact with the SuD and will show up as an actor. An example might be

the board of directors of the company or the Tax and Customs Administration,

which also may require things from the system that must be taken into account. It

is important to discover these “hidden” actors at an early stage as it may reveal

requirements that may be missed otherwise.

A TEXT FORM

As said in the introduction, are use cases fundamentally a text form. They serve to

communicate from one person to another, which are often people with no training

in the field of systems development. Therefore in most cases a simple text is the

best form. Use case modeling is not about making it complete and pretty; sufficient

is good enough. There is no harm in using business terminology that is familiar to

everyone involved or that is documented in a glossary. Ideally a use case will fit on

one paper.

Scenarios

The main part of a use case is its scenario. A scenario describes a sequence of steps

that are executed in order to fulfill the goal the use case is supposed to deliver. For

example, the scenario that describes how to get a parking ticket from a machine

could look like this:

Stakeholders have an interest in the

delivery of the goal of a use case. A use

case describes how the system should

respond to a request from the primary

actor, which in most cases triggers the use

case.

A use cases are fundamentally a text form

and are used to specify the functional

requirements of a system, primarily as a

scenario. The scenario describes how the

system should respond to a request of a

primary actor to deliver a specific goal of

that actor.

Getting Started With Use Case Modeling Page 5

Buy Parking Ticket

1. The Car Driver enters a coin in the Ticket Machine

2. The Ticket Machine indicates until when the Car Driver can park

3. The Car Driver continues with step 1 and 2 until satisfied

4. The Car Driver presses the button to retrieve the parking ticket

5. The Ticket Machine prints the parking ticket

The scenario must be easy to read. Therefore you should avoid scenarios of more

than nine steps and you should always use the active voice, stating exactly who or

what is doing what. This includes the SuD itself.

In the scenario above everything goes as planned, which therefore is called a main

success scenario. But in many cases there are exceptions that require a deviation

from the planned scenario. In this example exceptions may consist of the Car

Driver entering a coin of invalid currency or aborting the transaction. Exceptions

are documented as extensions.

Extensions

An exception is documented by specifying an alternate route in the scenario, which

is called an extension (related to, but not the same as an extension use case, which

will be discussed later on). Extensions can be added to the main success scenario

as follows:

Buy Parking Ticket

Main Success Scenario:

1. The Car Driver enters a coin in the Ticket Machine

2. The Ticket Machine validates the coin

3. The Ticket Machine indicates until when the Car Driver can park

4. …

Extensions:

2a Invalid coin:

2a1 The Ticket Machine returns an invalid coin

 2a2 Return to step 1

3a Car Driver aborts transaction:

 3a1 The Ticket Machine returns the coins that have been entered

 3a2 The scenario ends

The scenario of a use case consists of a

main success scenario to which one or

more extensions may apply. An extension

describes an alternate path, which results

from an exception to the main success

scenario.

Getting Started With Use Case Modeling Page 6

There is no standard for the layout of a scenario, let alone how to add extensions.

It is good practice to number the steps of the main scenario and to put the

extensions after that instead of in between in order to keep the scenario readable.

Number the extensions in such a way that it is clear at what step it exits from the

main success scenario and what point it returns. For example, a third extension

that also exits at step 2 would be numbered as 2b1, 2b2, etc.

Use Case Properties

Although it is the core the scenario is not the only thing there is to say about a use

case. Other aspects (or properties as you may call them) of a use case may consist

of the following:

• Scope: the name of the (part of the) system the use case belongs to

• Stakeholder: someone or something that has an interest in the goal

the use case delivers

• Primary Actor: the stakeholder who or which initiates the use case to

achieve a goal

• Brief Description: a brief description of the goal the use case is

supposed to deliver

• Level: at what level the use case has been written (to be discussed in

“Scope and Level”)

• Preconditions: what conditions must be met before the scenario can

start (to be discussed in “Preconditions and Guarantees”)

• Postconditions: what conditions must be met for a valid end of the

scenario, to be divided into minimal guarantee(s) and success

guarantee(s) (to be discussed in “Preconditions and Guarantees”)

• Trigger: the event or sequence of events that initiate the use case.

Use Case Templates

There is also no standard that dictates what properties need to be included in a use

case. What you need to write down for use cases depends on the situation,

especially on who is writing it and for what purpose. For example, if an on-site

team performs the requirements definition and analysis, while the design and

implementation is done remotely, you need to be very explicit and you probably

specify all these properties and even more. On the other hand, a small team that

performs the requirements definition up to the implementation in one and the

same room may suffice with specifying only a few properties, perhaps only the

Brief Description.

Number the steps of the scenario and make

explicit where an extension exists and

returns to the main success scenario.

Getting Started With Use Case Modeling Page 7

Before you start your project you should decide upon templates that are going to

be used. In practice it suffices to use two templates for each project. You use a

simple one with only a few properties for use cases that do not need to be worked

out in detail. You use a more extensive one that has all properties that are relevant,

for the other use cases. The first template is commonly called the Casual version

and the second one the Fully Dressed version. JDeveloper also comes with a

Casual and Fully Dressed template. Review and modify the templates to fit the

needs of your project. You may want to add properties like Brief Description,

Number, Priority or Status.

In the appendix an example is provided that is based on the Casual.html template

that comes with JDeveloper to which the property “Brief Description” has been

added. This property is specifically useful when you start use case modeling by

setting up a User-Goal list (as will be discussed in “Writing In Iterations”).

The JDeveloper use case templates Casual.xhtml_usc and FullyDressed.xhtml_usc

can be found in [JDEV_HOME]\jdev\system\oracle.bm.XYZ\templates\

usecase, where XYZ refers to the build version of JDeveloper, for example

system10.1.3.44.66. The following example shows how the property “Brief

Description” has been added to either the Casual or FullyDressed template, just

before the </td> and </tr> tag of the “Stakeholder(s)” property:

 </uml:usecase_communicates>

 </td>

</tr>

<tr>

 <td width="30%" class="UseCaseTableCellTitle" align="right"

 valign="top">

 <h3>Brief:</h3>

 </td>

 <td width="70%" class="UseCaseTableCellContents" valign="top">

 <!-- Brief Description, as a short descriptive text about

 the goal of the use case -->

 </td>

</tr>

Consider changing both templates to set the default of the Level property to “User

Goal” rather than “Summary” as most use cases will be of that level.

You can also add a new template by copying an existing one and modify that to

your purpose. You can then create a new Component Palette page where you can

add your new template as a component (see also the subject Creating Use Case

Component Palette Pages in the JDeveloper help).

On the average project it suffices to work

with two different templates for use cases:

Casual, which has the minimal set of

properties, and Fully Dressed, which has all

relevant properties. Agree upon the

templates before you start the project. Add

at least the properties Brief Description and

Number to the JDeveloper templates.

Getting Started With Use Case Modeling Page 8

SCOPE AND LEVEL

Use cases can be written for different purposes. They can be written to describe a

business process, to describe the functional requirements of a system or to document the

design of a system. Use cases can also be written at different levels of detail, from

high to low level.

Design Scope

The design scope of a use case can be the enterprise, a specific system or a

subsystem. Use cases that are used to describe the business process are typically of

scope “enterprise”. The design scope is not a specific property of a use case (thus

not be confused with the “scope” property) but something you should consider

carefully to make sure you understand what is inside and what is outside the

boundary of the use case. Something that is essential for the use case but outside

its boundary, must be covered either by another actor (which may be a supporting

actor) or another use case. For instance, if some other system delivers data that is

essential to the use case, you do not model how that system works but model it as

an actor.

Business and System Use Cases

Business people write Business uses cases that have the business as subject and are

used to document business processes. Software developers write System use cases

that have the system as subject and describe how actors communicate with the

system to achieve their goals. “Sell Books” will be a business use case, where

“Browse Catalogue” will be a system use case.

Use Case Level

Cockburn distinguishes three main levels of use cases, being Summary, User Goal

and Subfunction. Furthermore he uses a sailboat analogy with corresponding

symbols. Summary use cases are at cloud or kite level, User Goal use cases

at sea level and Subfunction use cases are under water at a fish or clam
level.

A User Goal () use case addresses the question: “Can the primary actor go

away happily after the use case finished?” The use cases “Complete Online

Purchase Order” or “Log On” do not generally count as user goals. The first one

does not because it may take days to complete an online purchase order and the

second one does not because logging on will not be user goal as such. “Buy Book”

or “Register Customer” are more likely to be User Goal use cases.

A Summary (/) use case outlines the context of a set of User Goal use

cases. The Summary use case may have a step in its scenario for each User Goal

use case. The time frame of a summary use cases is typically in terms of hours,

days, weeks or more. Recognizing Summary use cases can be a valuable aid while

determining the high-level requirements, but will not provide the functional

requirements.

Carefully consider the scope of a use case.

If something is essential for the use case

but outside its scope, it must be covered by

an actor or another use case.

Getting Started With Use Case Modeling Page 9

The already mentioned “Complete Online Purchase Order” could be a use case at

the kite level. “Run Web Book Store” could be a use case at the even higher cloud

level.

A Subfunction (/) use case is created to move out an isolated part of a

scenario to a separate use case. In most cases this is done to keep the original use

case readable or because that particular part of the scenario can be reused and

serve as building blocks for other use cases. A typical example of a Subfunction

use case at the fish level is “Log on”.

Subfunction use cases at the even lower clam level could be “Record Log On

Attempt” and “Revoke Access”. Use cases at this level are generally too detailed to

be created during the analysis because they are seldom visible to the actors. But

during design clam level use cases may be created to work out some processing

algorithm.

Use cases at different levels

Mind that Business and System use cases at one hand and Summary, User Goal

and Subsystem use cases at the other hand, are basically two different dimensions.

Recall that Business use cases may be created by business analyst where system use

cases are created by system developers, probably resulting in two different sets.

PRECONDITIONS AND GUARANTEES

You use Preconditions to specify the conditions that must hold true before the

scenario of the use case starts and will not be checked again after that. Often a

precondition indicates that some other use case has already run to set up the

condition. Write preconditions as a set of assertions, for example “User is logged

on”, “Credit Card has been validated” and so on. Consider putting preconditions

that hold for multiple use cases, in a separate document. Instead of including the

assertion in the use case, you then include a reference to the generic precondition.

Business use cases are created by

business analysts and describe the

business, whereas system use cases are

created by developers and describe the

system. Use cases can be of different level,

from high-level Summary uses cases,

through mid-level User Goal Use cases, to

low-level Subsystem use cases.

Getting Started With Use Case Modeling Page 10

With Minimal Guarantees you specify what, from the viewpoint of the

stakeholders, at least must hold true in case neither the main success scenario nor

any alternate rout has successfully finished. The most common Minimal Guarantee

is “The System has logged how far it got”. Minimal Guarantees are written as a set

of assertions that must be satisfied at the end of any path of the scenario, for

example “All entered information must have been stored”.

With Success Guarantees you specify what must have been achieved at the end

of the main success scenario or any alternate route. Success Guarantees are also

written as a set of assertions that describe what would satisfy any of the interests of

the stakeholders. These assertions add to the Minimal Guarantees.

Mind that Preconditions and Guarantees may be related to, but are not the same as

business rules.

USE CASE DIAGRAMS

A use case diagram provides an index to use cases. The following gives an

overview of the conventions you should apply when drawing use case diagrams.

Actors and Use Cases

In a diagram you include actors as people-like figures and use cases as ellipses and

draw lines that indicate the relationships, or communications between them.

It is custom to draw the primary actor and other stakeholders that communicate

with the use case to the left and secondary actors to the right. Put the primary

actor at the top, as in the following example.

Actors, use cases and communications

Use Case Inclusions

Higher-level use cases may call lower-level use cases (that is: require the behavior of

lower-level use cases). In UML-speak it is said that the higher-level use case includes

the lower-level one, hence the term “inclusion”. A typical example is a Summary

use case that includes User Goal use cases. Another typical example is a User Goal

use case that includes some reusable Subfunction use case, like “Log On”.

If you want to express this in the scenario of the Summary use case, you underline

the name of the lower-level use case, as in the following example:

Preconditions describe what needs to be

true before the use case can start. Minimal

Guarantees describe what at least should

hold true when the goal is not met, whereas

Success Guarantees describe what would

satisfy the goal.

A use case inclusion is another way to say

that one use case calls the other.

Getting Started With Use Case Modeling Page 11

Log Ticket

Main Success Scenario:

1. The Helpdesk Employee Finds Customer using its name or address

2. The Helpdesk Employee enters the details of the Ticket

3. …

An inclusion is drawn as a dashed

arrow from the higher-level to the

lower-level use case. The lower-level

use case should also be drawn lower

to emphasize it is at a lower level.

Use Case Extensions

Recall that earlier on an extension has been defined as alternate route to the main

success scenario. In general an extension use case is an extension of a main success

scenario that has been moved out of the originating use case into a use case of its

own. The point at which it exists the originating use case is called an extension

point like the point at which it returns is called the return point.

When moving out the extension, the exception to the main success scenario

becomes the trigger of the extension use case. In the extension use case you refer

to the originating use case buy underlining its name, but not visa versa. Suppose

you would like to model the fact that a Car Driver can abort buying a parking

ticket using an extension use case. The scenario of the originating use case does

not change except for the fact that the alternate scenario is cut out of the extension

part. The extension use case may look as follows:

Abort Transaction

Trigger: any time in Buy Ticket the Car Driver can abort the transaction

Main Success Scenario

1. The Ticket Machine returns the coins that have been entered

An extension is drawn using a dashed

arrow from the extension use case to

the originating one. The extension use

case should be drawn lower than the

originating use case, emphasizing that

it is at a lower level.

Getting Started With Use Case Modeling Page 12

There are a few situations in which you create extension use cases, being:

• To leave details out of the originating use case that otherwise would

clutter its scenario.

• As a way to add to requirements that are fixed and you are not

allowed to change the originating use case.

• When the extension concerns an isolated piece of functionality that

may be implemented by a different team. In this case you may want

to be able to estimate both use cases separately.

Generalized Use Cases and Actors

In UML you can generalize use cases. When use case A specializes use case B (or B

generalizes A) you express that A is “a kind of” B, implying that whatever applies

to B also applies to A. A adds to or may override behavior of B.

Use case generalizations are drawn

by drawing an open arrow from

the specialized use cases to the

general one. The specialized use

cases are drawn below the general

one.

It is imperative that use cases are easy to read, while specializing some generic

scenario is conceptually a difficult thing to understand. In practise you probably are

best off by leaving the scenario of the generic use case empty and using

generalization only to share common stakeholders, triggers, conditions or other

properties between specialized use cases. However, the larger the system, the

more advantageous using the mechanism of generalizing use cases may become.

Actors can be specialized too, but that may also introduce confusion and should be

done scarcely. There are not that many properties to share between actors anyway.

ORGANIZING USE CASES

When there are more than just a few, organizing use cases becomes imperative for

several reasons, among them to be able to find them back.

As applies to many things giving a use case a proper name is a good start. A good

name generally has the form “Do Something” (active verb phrase) and expresses

the goal of the primary actor as clear as possible. Another good thing to do is to

number the use cases. In most situations a generic, hierarchical numbering will suit

best. For example, when the summary use case has number 1, use cases that detail

this are numbered as 1.1, 1.2 and so on.

An extension to the main success scenario

can be moved out to an extension use case,

to prevent the use case from becoming too

complex. Other reasons to create extension

uses cases can be to add to fixed

requirements or when a different

development team implements the

extension.

Use case and actor generalizations may be

too complex for targeted audience to

understand. Use them with care.

Getting Started With Use Case Modeling Page 13

UML provides the package construct to organize modeling elements, which can

also be used for use cases. With JDeveloper versions up to 10.1.3 you cannot

change the package of sets of use cases at a time, only one at a time1. This will

change in some future release, but even then diagrams must be redrawn after you

moved use cases, which can take a considerable amount of time. Therefore, before

you start recording use cases you should carefully think about how you want to

organize them, trying to prevent a future need to move use cases.

There are a couple of alternatives to organize use cases:

• By primary actor

• By summary use case

• By development team and release

• By subject area

• Combinations of the above

Cockburn states that from 80 to 100 use cases, organizing them by primary actor

looses effectiveness, as you end up with too many use cases per primary actor.

Whenever you write Summary use cases, organizing by Summary use case is a

natural thing to do. If there is more than one team, then organize them by

development team. This also makes (re)estimating and progress monitoring easier.

Coburn states that from 100 use cases or more, people naturally start clustering use

cases by subject area.

When you decided to organize the use cases by primary actor, you can create a

package structure for example as follows:

mycompany.myproject.usecases.actor1

mycompany.myproject.usecases.actor2

…

JDeveloper supports two “Subjects”, being “System Boundary” and “Milestone”.

The System Boundary typically is used to organize use cases by (sub)system but

can also be used for other subject areas you might recognize. Milestones can be

used for example when the system is developed in increments to organize use

cases per development team and release, or other types of delivery dimensions. A

use case can appear in more that one Subject, for example in both a System

Boundary and a Mile Stone.

The following figure shows an example of using System Boundaries to identify to

what subsystems use cases belong to.

1 You can move a use case from one package to another by selecting it, right-click ->
Display Properties -> check “Show Package” and change the package manually. For
readability you need to uncheck “Show Package” afterwards.

Give use cases a name that expresses the

goal clearly and number them. Use cases

can be organized by primary actor,

Summary use case, development team and

release, or subject area.

Getting Started With Use Case Modeling Page 14

Consider creating one package “mycompany.myproject.allactors” that contains one

diagram to drop actors on and include them in other diagrams. This enforces that

actor names are unique (as they should). You can include actors in another diagram

by either right-clicking the diagram, or by copy-paste.

Also consider putting activity diagrams that detail a use cases (see also “Relation

With Other UML Artifacts”) in a sub package of the package the related use case is

in, for example “mycompany.myproject.usecases.actor1.activities”.

WRITING IN ITERATIONS

Use cases are written in iterations. A good way to start is with identifying all actors

and their goals. If your work with a high-level MoSCoW-list2 to define the scope of

the project you may consider setting it up as an Actor-Goal List that lists all actors

with their named goals, a brief description of each goal and the priority it has.

Actor-Goals List starts with naming the actors with their goals. When you have the

feeling the list is pretty complete, you start adding Brief Descriptions. You may

find new goals and actors when doing so. After the Actor-Goal List is verified and

complete, it can be prioritized. Keep in mind that the priority of each goal should

have been determined by the customer.

The next step is to create initial use cases out of the Actor-Goal List. Many of the

goals will turn out to be User Goal level use cases. In many cases you can use the

goal as name for the use case and copy the Brief Description.

After that you write the main success scenario for all use cases. Next you identify

the exceptions there may be to the main success scenario of each use case and you

write extension to that. It is very important to work out these exceptions, as new

actors, classes (see also “Relation to Other UML Artefacts”) and business rules

may be discovered.

2 MoSCoW stands for Must Have, Should Have, Could Have and Won’t Have and is
used to prioritize functionality. You can find more about MoSCoW at
http://na.dsdm.org/en/about/moscow.asp.

Getting Started With Use Case Modeling Page 15

The following table is an example Actor-Goal List with MoSCoW prioritization:

Actor Goal Brief Description Prio

Customer Place Order Use the web store to purchase one or

more books.

M

 Receive Purchased

Books

Receive books in good order and sign for

it.

M

Sales Staff Process Order Receive an online order and initiate the

delivery process.

M

 Notify Customer

Offerings

Send an email to customers about special

offers.

S

Book Store

Staff

Prepare Shipment Collect all books for one order and prepare

it for shipment to the customer.

M

 Track Shipment View the delivery status of the shipment C

Do not yet try to optimize the scenarios at this point by generalizing use cases,

creating inclusions or extensions. By now you should have a pretty complete set of

User Goal use cases. Verify this with the customer before you move on!

Finally you may optimize the use cases by using generalization, creating

Subfunction use cases use inclusions and even extensions.

The short recipe for creating use cases is as follows:

1. Identify the actors

2. List their goals

3. Add brief descriptions to the goals

4. Create an initial use case for each goal

5. Describe the main success scenario for each use case

6. Identify the exceptions to the main success scenarios and work them

out as extensions

7. Validate the use cases

8. Optimize the use cases

Getting Started With Use Case Modeling Page 16

RELATION WITH OTHER UML ARTIFACTS

At some point when writing the main scenario, you start documenting the classes

that support the requirements that have been captured by the use cases. To clearly

express the relationship with the classes, you refer to them in the scenario using

their exact name.

Complex scenarios can be documented using an Activity Diagram. The Activity

Diagram is then a graphical representation of the scenario of the use case,

including its extensions. Activity Diagrams are generally created to detail User Goal

use cases, but you can use them detail any use case at any level.

When timing aspects of scenario are important, you can document that using a

Sequence Diagram. Whenever there is the need to document the relationship

between use cases and classes, you can use a Collaboration Diagram.

More information about Activity, Sequence or Collaboration Diagrams can be

found at the UML site. A very pragmatic view on using UML diagrams is provided

by Scott Ambler, whose site is mentioned at the end of this paper.

USE CASES VERSUS FUNCTION HIERARCHY

Use cases are the object-oriented equivalent of the function hierarchy of the

traditional structured analysis, though there are some notable differences.

A User Goal use case can be compared to an elementary function (for which you

record Create, Retrieve, Update and Delete usages or CRUD for short) that are

candidate to be transformed to screen, report or batch modules. The Summary use

case can be compared to a master function (that is the parent of two or more

elementary functions), while the Submodule use case can be compared to a

supporting function.

In general a function hierarchy is created by clustering functionality from a

functional point of view, whereas with use cases functionality is organized from

the point of view of user goals. Structured analysis tends to optimize from day one

by trying to avoid duplicate functionality, while with use case modeling this is not a

prime concern. It is likely that, when both are being performed in a proper way, in

the end the result of both approaches will deliver comparable results. Personally I

tend to believe that with use case modeling this result will be delivered more

efficiently, especially because of the focus on the user goals.

This section started to state that use cases are the object-oriented equivalent of a

function hierarchy, but there is nothing object-oriented about use cases as such.

The requirements that have been captured with use cases still need to be mapped

to an object-oriented design. Use cases may just as well be mapped to a relational

design. Unlike a function hierarchy, use cases can be used at any level of the

analysis and design including a technical design, although the latter is rarely done .

Use cases can be detailed by Activity

Diagrams, Sequence Diagrams,

Collaboration Diagrams, or whatever other

technique is appropriate.

Getting Started With Use Case Modeling Page 17

With a function hierarchy you explicitly record how entities are used. With use

cases you do not explicitly record how objects are used. As a result, checks for

completeness and impact analysis are more difficult with use cases.

MORE INFORMATION

A book that you want to have at hand when creating use cases is “Writing

Effective Uses Cases”, by Alistair Cockburn (ISBN 978-0201702255). This book

contains many examples that clearly illustrate good use cases. Cockburn also has a

website that can be reached at http://alistair.cockburn.us/.

More interesting information about object-oriented analysis and design in general,

including use case modeling, can be found at Parlez|UML: http://parlezuml.com.

The official UML site can be found at http://www.uml.org/. A short and very

pragmatic reference on how to use UML modeling techniques, can be found at the

site of Scott W. Ambler:

http://www.agilemodeling.com/essays/umlDiagrams.htm

Other papers in the Getting Started With series are:

Getting Started With Class Modeling

Getting Started With Use Case Modeling

Getting Started With Unit-Testing

Getting Started With CVS

Getting Started With Use Case Modeling Page 18

Example of a modified JDeveloper Casual use case template

Extends :

Specializes :

Goal of Primary Actor :

Level :
User Goal

Scope :
Ticket Machine

Stakeholder(s) :
Car Driver
Traffic Police

Brief Description :
A Car Driver buys a parking ticket from the Ticket Machine.

Precondition :
The Ticket Machine must be functioning

Postcondition :

Minimal Guarantee(s) :

Success Guarantee(s) :

The Car Driver has been provided with a printed ticket.

Trigger :
The Car Driver enters a coin in the Ticket Machine.

Scenario :

1. The Car Driver enters a coin in the Ticket Machine.

2. The Ticket Machine validates the coin

3. The Ticket Machine indicates until when the Car Driver can park.

4. The scenario continues with step 1 and 2 until the Car Driver is satisfied

5. The Car Driver presses the button to retrieve the parking ticket.

6. The Ticket Machine prints the parking ticket.

Extensions

2a Invalid coin:

 2a1 The Ticket Machine returns an invalid coin;

2a2 Return to step 1

3a Car Driver aborts transaction:

 3a1 The Ticket Machine returns the coins that have been entered

3a2 The scenario ends.

Open Issue(s) :...

Referenced By :

Getting Started With Use Case Modeling

May 2007

Author: Jan Kettenis

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2005-2007, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

