

SQLite Tutorial

i

SQLITE TUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

ABOUT THE TUTORIAL

SQLite Tutorial
SQLite is a software library that implements a self-contained, serverless, zero-configuration,

transactional SQL database engine. SQLite is the most widely deployed SQL database engine in the
world. The source code for SQLite is in the public domain.

This tutorial will give you quick start with SQLite and make you comfortable with SQLite programming.

Audience
This reference has been prepared for the beginners to help them understand the basic to advanced
concepts related to SQLite Database Engine.

Prerequisites
Before you start doing practice with various types of examples given in this reference, I'm making an

assumption that you are already aware about what is database, especially RDBMS and what is a
computer programming language.

Copyright & Disclaimer Notice

All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

Table of Content

SQLite Tutorial ... 2

Audience .. 2

Prerequisites .. 2

Copyright & Disclaimer Notice .. 2

SQLite Overview .. 12

What is SQLite? ... 12

Why SQLite? .. 12

History: ... 13

SQLite Limitations: ... 13

SQLite Commands: .. 13

DDL - Data Definition Language: ... 13

DML - Data Manipulation Language: .. 13

DQL - Data Query Language: .. 14

SQLite Installation .. 15

Install SQLite On Windows ... 15

Install SQLite On Linux... 15

Install SQLite On Mac OS X ... 16

SQLite Commands ... 17

Formatting output ... 19

The sqlite_master Table ... 19

SQLite Syntax .. 20

Case Sensitivity .. 20

Comments .. 20

SQLite Statements ... 20

SQLite ANALYZE Statement: ... 20

SQLite AND/OR Clause: .. 21

SQLite ALTER TABLE Statement: ... 21

SQLite ALTER TABLE Statement (Rename): .. 21

SQLite ATTACH DATABASE Statement: ... 21

SQLite BEGIN TRANSACTION Statement: ... 21

SQLite BETWEEN Clause: .. 21

SQLite COMMIT Statement: .. 21

SQLite CREATE INDEX Statement: .. 21

SQLite CREATE UNIQUE INDEX Statement: .. 21

SQLite CREATE TABLE Statement: .. 22

SQLite CREATE TRIGGER Statement : .. 22

SQLite CREATE VIEW Statement : ... 22

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite CREATE VIRTUAL TABLE Statement: .. 22

SQLite COMMIT TRANSACTION Statement: .. 22

SQLite COUNT Clause: ... 22

SQLite DELETE Statement: ... 22

SQLite DETACH DATABASE Statement: .. 23

SQLite DISTINCT Clause: .. 23

SQLite DROP INDEX Statement : .. 23

SQLite DROP TABLE Statement: .. 23

SQLite DROP VIEW Statement : ... 23

SQLite DROP TRIGGER Statement : .. 23

SQLite EXISTS Clause: ... 23

SQLite EXPLAIN Statement : ... 23

SQLite GLOB Clause: .. 23

SQLite GROUP BY Clause: ... 23

SQLite HAVING Clause: .. 24

SQLite INSERT INTO Statement: .. 24

SQLite IN Clause: .. 24

SQLite Like Clause: ... 24

SQLite NOT IN Clause: .. 24

SQLite ORDER BY Clause: ... 24

SQLite PRAGMA Statement: ... 24

SQLite RELEASE SAVEPOINT Statement: ... 25

SQLite REINDEX Statement: ... 25

SQLite ROLLBACK Statement: .. 25

SQLite SAVEPOINT Statement: .. 25

SQLite SELECT Statement: ... 25

SQLite UPDATE Statement: .. 25

SQLite VACUUM Statement: ... 25

SQLite WHERE Clause: ... 25

SQLite Data Type .. 26

SQLite Storage Classes: .. 26

SQLite Affinity Type: .. 26

SQLite Affinity and Type Names: ... 27

Boolean Datatype: .. 28

Date and Time Datatype: ... 28

SQLite Create Database .. 29

Syntax: ... 29

Example: .. 29

The .dump Command... 30

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Attach Database ... 31

Syntax: ... 31

Example: .. 31

SQLite Detach Database ... 32

Syntax: ... 32

Example: .. 32

SQLite Create Table .. 33

Syntax: ... 33

Example: .. 33

SQLite Drop Table ... 35

Syntax: ... 35

Example: .. 35

SQLite Insert Query ... 36

Syntax: ... 36

Example: .. 36

Populate one table using another table: ... 37

SQLite Select Query .. 38

Syntax: ... 38

Example: .. 38

Setting output column width: .. 39

Schema Information: .. 39

SQLite Operators ... 41

SQLite Arithmetic Operators: ... 41

Example ... 42

SQLite Comparison Operators: .. 42

Example ... 43

SQLite Logical Operators: .. 44

Example ... 44

SQLite Bitwise Operators: .. 46

Example ... 47

SQLite Expressions ... 49

Syntax: ... 49

SQLite - Boolean Expressions: .. 49

SQLite - Numeric Expression: .. 50

SQLite - Date Expressions: .. 50

SQLite Where Clause .. 51

Syntax: ... 51

Example: .. 51

SQLite AND and OR Operator ... 54

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The AND Operator: .. 54

Syntax: ... 54

Example: .. 54

The OR Operator: .. 55

Syntax: ... 55

Example: .. 55

SQLite Update Query ... 56

Syntax: ... 56

Example: .. 56

SQLite Delete Query .. 58

Syntax: ... 58

Example: .. 58

SQLite Like Clause .. 60

Syntax: ... 60

Example: .. 61

SQLite Glob Clause ... 63

Syntax: ... 63

Example: .. 64

SQLite LIMIT Clause .. 66

Syntax: ... 66

Example: .. 66

SQLite Order By Clause ... 68

Syntax: ... 68

Example: .. 68

SQLite Group By Clause .. 70

Syntax: ... 70

Example: .. 70

SQLite Having Clause .. 73

Syntax: ... 73

Example: .. 73

SQLite Distinct Keyword .. 75

Syntax: ... 75

Example: .. 75

SQLite PRAGMA ... 77

Syntax: ... 77

auto_vacuum Pragma .. 77

cache_size Pragma .. 78

case_sensitive_like Pragma ... 78

count_changes Pragma ... 78

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

database_list Pragma... 78

encoding Pragma ... 78

freelist_count Pragma .. 78

index_info Pragma ... 79

index_list Pragma ... 79

journal_mode Pragma .. 79

max_page_count Pragma .. 79

page_count Pragma ... 80

page_size Pragma ... 80

parser_trace Pragma.. 80

recursive_triggers Pragma ... 80

schema_version Pragma .. 80

secure_delete Pragma ... 80

sql_trace Pragma ... 81

synchronous Pragma ... 81

temp_store Pragma .. 81

temp_store_directory Pragma .. 81

user_version Pragma ... 82

writable_schema Pragma ... 82

SQLite Constraints ... 83

NOT NULL Constraint .. 83

EXAMPLE: ... 83

DEFAULT Constraint.. 83

EXAMPLE: ... 84

UNIQUE Constraint .. 84

EXAMPLE: ... 84

PRIMARY KEY Constraint ... 84

EXAMPLE: ... 84

CHECK Constraint ... 85

EXAMPLE: ... 85

Dropping Constraints:... 85

SQLite Joins .. 86

The CROSS JOIN .. 87

The INNER JOIN .. 87

The OUTER JOIN .. 88

SQLite UNIONS Clause ... 90

Syntax: ... 90

Example: .. 90

COMPANY TABLE ... 90

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The UNION ALL Clause: .. 92

Syntax: ... 92

Example: .. 93

SQLite NULL Values .. 94

Syntax: ... 94

Example: .. 94

SQLite ALIAS Syntax ... 96

Syntax: ... 96

Example: .. 96

SQLite Triggers .. 98

Syntax: ... 98

Example ... 99

Listing TRIGGERS ... 100

Dropping TRIGGERS ... 100

SQLite Indexes .. 101

The CREATE INDEX Command: ... 101

Single-Column Indexes: ... 101

Unique Indexes: ... 101

Composite Indexes: ... 102

Implicit Indexes: ... 102

Example ... 102

The DROP INDEX Command: ... 102

When should indexes be avoided? .. 103

SQLite Indexed By ... 104

Syntax .. 104

Example ... 104

SQLite Alter Command .. 106

Syntax: ... 106

Example: .. 106

SQLite Truncate Table ... 108

Syntax: ... 108

Example: .. 108

SQLite Views ... 109

Creating Views: .. 109

Example: .. 109

Dropping Views: ... 110

SQLite TRANSACTIONS ... 111

Properties of Transactions: .. 111

Transaction Control: ... 111

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The BEGIN TRANSACTION Command: .. 112

The COMMIT Command: ... 112

The ROLLBACK Command: .. 112

Example: .. 112

SQLite Sub Queries ... 114

Subqueries with the SELECT Statement:... 114

Example: .. 115

Subqueries with the INSERT Statement: ... 115

Example: .. 115

Subqueries with the UPDATE Statement: .. 116

Example: .. 116

Subqueries with the DELETE Statement: ... 116

Example: .. 116

SQLite AUTOINCREMENT .. 118

Syntax: ... 118

Example: .. 118

SQLite Injection .. 120

Preventing SQL Injection: ... 120

SQLite Explain ... 122

Syntax: ... 122

Example: .. 122

SQLite Vacuum .. 125

Manual VACUUM ... 125

Auto-VACCUM ... 125

SQLite Date & Time ... 127

Time Strings: .. 127

Modifiers ... 128

Formatters: ... 128

Examples ... 129

SQLite Useful Functions .. 131

SQLite COUNT Function .. 132

SQLite MAX Function ... 132

SQLite MIN Function .. 132

SQLite AVG Function ... 132

SQLite SUM Function... 133

SQLite RANDOM Function ... 133

SQLite ABS Function ... 133

SQLite UPPER Function .. 133

SQLite LOWER Function ... 134

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite LENGTH Function .. 134

SQLite sqlite_version Function ... 134

SQLite C/C++ Tutorial .. 135

C/C++ Interface APIs ... 135

Connecting To Database.. 136

Create a Table ... 136

INSERT Operation ... 137

SELECT Operation .. 138

UPDATE Operation .. 140

DELETE Operation .. 141

SQLite Java Tutorial .. 144

Connecting To Database.. 144

Create a Table ... 145

INSERT Operation ... 145

SELECT Operation .. 146

UPDATE Operation .. 148

DELETE Operation .. 149

SQLite PHP Tutorial ... 151

PHP Interface APIs .. 151

Connecting To Database.. 152

Create a Table ... 152

INSERT Operation ... 153

SELECT Operation .. 154

UPDATE Operation .. 155

DELETE Operation .. 156

SQLite Perl Tutorial .. 158

DBI Interface APIs .. 158

Connecting To Database.. 159

Create a Table ... 160

INSERT Operation ... 161

SELECT Operation .. 161

UPDATE Operation .. 162

DELETE Operation .. 164

SQLite Python .. 165

Python sqlite3 module APIs ... 165

Connecting To Database.. 167

Create a Table ... 167

INSERT Operation ... 168

SELECT Operation .. 168

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

UPDATE Operation .. 169

DELETE Operation .. 170

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Overview

Tthis tutorial helps you to understand what is SQLite , how it differs from SQL, why it is needed and the

way in which it handles the applications Database.

SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine. SQLite is one of the fastest-growing database engines around, but that's growth in terms of
popularity, not anything to do with its size. The source code for SQLite is in the public domain.

What is SQLite?
SQLite is an in-process library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine. It is the one database, which is zero-configured, that means like other database you do not
need to configure it in your system.

SQLite engine is not a standalone process like other databases, you can link it statically or dynamically as per
your requirement with your application. The SQLite accesses its storage files directly.

Why SQLite?
 SQLite does not require a separate server process or system to operate (serverless).

 SQLite comes with zero-configuration, which means no setup or administration needed.

 A complete SQLite database is stored in a single cross-platform disk file.

 SQLite is very small and light weight, less than 400KiB fully configured or less than 250KiB with optional
features omitted.

 SQLite is self-contained, which means no external dependencies.

 SQLite transactions are fully ACID-compliant, allowing safe access from multiple processes or threads.

 SQLite supports most of the query language features found in the SQL92 (SQL2) standard.

 SQLite is written in ANSI-C and provides simple and easy-to-use API.

 SQLite is available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows (Win32, WinCE, WinRT).

CHAPTER

1

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

History:
1. 2000 -- D. Richard Hipp had designed SQLite for the purpose of no administration required for operating a

program.

2. 2000 -- In August, SQLite 1.0 released with GNU Database Manager.

3. 2011 -- Hipp announced to add UNQl interface to SQLite DB and to develop UNQLite (Document oriented
database).

SQLite Limitations:
There are few unsupported features of SQL92 in SQLite which are shown below:

Feature Description

RIGHT OUTER
JOIN

Only LEFT OUTER JOIN is implemented.

FULL OUTER
JOIN

Only LEFT OUTER JOIN is implemented.

ALTER TABLE
The RENAME TABLE and ADD COLUMN variants of the ALTER TABLE command are
supported. The DROP COLUMN, ALTER COLUMN, ADD CONSTRAINT not supported.

Trigger support FOR EACH ROW triggers are supported but not FOR EACH STATEMENT triggers.

VIEWs
VIEWs in SQLite are read-only. You may not execute a DELETE, INSERT, or UPDATE
statement on a view.

GRANT and
REVOKE

The only access permissions that can be applied are the normal file access permissions of the
underlying operating system.

SQLite Commands:
The standard SQLite commands to interact with relational databases are similar as SQL. They are CREATE,
SELECT, INSERT, UPDATE, DELETE and DROP. These commands can be classified into groups based on their
operational nature:

DDL - Data Definition Language:
Command Description

CREATE Creates a new table, a view of a table, or other object in database

ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object in the database.

DML - Data Manipulation Language:
Command Description

INSERT Creates a record

UPDATE Modifies records

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

DELETE Deletes records

DQL - Data Query Language:
Command Description

SELECT Retrieves certain records from one or more tables

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Installation

The SQLite is famous for its great feature zero-configuration, which means no complex setup or

administration is needed. This chapter will take you through the process of setting up SQLite on Windows, Linux
and Mac OS X.

Install SQLite On Windows
 Go to SQLite download page, and download precompiled binaries from Windows section.

 You will need to download sqlite-shell-win32-*.zip and sqlite-dll-win32-*.zip zipped files.

 Create a folder C:\>sqlite and unzip above two zipped files in this folder which will give you sqlite3.def,
sqlite3.dll and sqlite3.exe files.

 Add C:\>sqlite in your PATH environment variable and finally go to the command prompt and
issue sqlite3 command, which should display a result something as below.

C:\>sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

Install SQLite On Linux
Today, almost all the flavours of Linux OS are being shipped with SQLite. So you just issue the following
command to check if you already have SQLite installed on your machine or not.

$sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

If you do not see above result, then it means you do not have SQLite installed on your Linux machine. So let's
follow the following steps to install SQLite:

 Go to SQLite download page and download sqlite-autoconf-*.tar.gz from source code section.

 Follow the following steps:

CHAPTER

2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.sqlite.org/download.html
http://www.sqlite.org/download.html

TUTORIALS POINT

Simply Easy Learning

$tar xvfz sqlite-autoconf-3071502.tar.gz

$cd sqlite-autoconf-3071502

$./configure --prefix=/usr/local

$make

$make install

Above procedure will end with SQLite installation on your Linux machine which you can verify as explained
above.

Install SQLite On Mac OS X
Though latest version of Mac OS X comes pre-installed with SQLite but if you do not have installation available
then just follow the following steps:

 Go to SQLite download page and download sqlite-autoconf-*.tar.gz from source code section.

 Follow the following steps:

$tar xvfz sqlite-autoconf-3071502.tar.gz

$cd sqlite-autoconf-3071502

$./configure --prefix=/usr/local

$make

$make install

Above procedure will end with SQLite installation on your Mac OS X machine which you can verify by issuing
following command:

$sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

Finally, you have SQLite command prompt where you can issue SQLite commands to do your excercises.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.sqlite.org/download.html

TUTORIALS POINT

Simply Easy Learning

SQLite Commands

This chapter will take you through simple and useful commands used by SQLite programmers. These

commands are called SQLite dot commands and exception with these commands is that they should not be
terminated by a semi-colon (;).

Let's start with typing a simple sqlite3 command at command prompt which will provide you SQLite command

prompt where you will issue various SQLite commands.

$sqlite3

SQLite version 3.3.6

Enter ".help" for instructions

sqlite>

For a listing of the available dot commands, you can enter ".help" at any time. For example:

sqlite>.help

Above command will display a list of various important SQLite dot commands, which are as follows:

Command Description

.backup ?DB? FILE Backup DB (default "main") to FILE

.bail ON|OFF Stop after hitting an error. Default OFF

.databases List names and files of attached databases

.dump ?TABLE?
Dump the database in an SQL text format. If TABLE specified, only dump tables
matching LIKE pattern TABLE.

.echo ON|OFF Turn command echo on or off

.exit Exit SQLite prompt

.explain ON|OFF Turn output mode suitable for EXPLAIN on or off. With no args, it turns EXPLAIN on.

.header(s) ON|OFF Turn display of headers on or off

.help Show this message

.import FILE TABLE Import data from FILE into TABLE

.indices ?TABLE? Show names of all indices. If TABLE specified, only show indices for tables matching

CHAPTER

3

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

LIKE pattern TABLE.

.load FILE ?ENTRY? Load an extension library

.log FILE|off Turn logging on or off. FILE can be stderr/stdout

.mode MODE

Set output mode where MODE is one of:

 csv Comma-separated values

 column Left-aligned columns.

 html HTML <table> code

 insert SQL insert statements for TABLE

 line One value per line

 list Values delimited by .separator string

 tabs Tab-separated values

 tcl TCL list elements

.nullvalue STRING Print STRING in place of NULL values

.output FILENAME Send output to FILENAME

.output stdout Send output to the screen

.print STRING... Print literal STRING

.prompt MAIN
CONTINUE

Replace the standard prompts

.quit Exit SQLite prompt

.read FILENAME Execute SQL in FILENAME

.schema ?TABLE?
Show the CREATE statements. If TABLE specified, only show tables matching LIKE
pattern TABLE.

.separator STRING Change separator used by output mode and .import

.show Show the current values for various settings

.stats ON|OFF Turn stats on or off

.tables ?PATTERN? List names of tables matching a LIKE pattern

.timeout MS Try opening locked tables for MS milliseconds

.width NUM NUM Set column widths for "column" mode

.timer ON|OFF Turn the CPU timer measurement on or off

Let's try .show command to see default setting for your SQLite command prompt.

sqlite>.show

 echo: off

 explain: off

 headers: off

 mode: column

nullvalue: ""

 output: stdout

separator: "|"

 width:

sqlite>

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Make sure there is no space in between sqlite> prompt and dot command, otherwise it will not work.

Formatting output
You can use the following sequence of dot commands to format your output the way I have listed down in this
tutorial:

sqlite>.header on

sqlite>.mode column

sqlite>.timer on

sqlite>

Above setting will produce the output in the following format:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

CPU Time: user 0.000000 sys 0.000000

The sqlite_master Table
The master table holds the key information about your database tables and it is called sqlite_master. You can

see its schema as follows:

sqlite>.schema sqlite_master

This will produce the following result:

CREATE TABLE sqlite_master (

 type text,

 name text,

 tbl_name text,

 rootpage integer,

 sql text

);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Syntax

SQLite is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a quick start

with SQLite by listing all the basic SQLite Syntax.

Case Sensitivity
Important point to be noted is that SQLite is case insensitive, but there are some commands, which are case
sensitive like GLOB and glob have different meaning in SQLite statements.

Comments
SQLite comments are extra notes, which you can add in your SQLite code to increase its readability and they can
appear anywhere; whitespace can occur, including inside expressions and in the middle of other SQL statements
but they can not be nested.

SQL comments begin with two consecutive "-" characters (ASCII 0x2d) and extend up to and including the next
newline character (ASCII 0x0a) or until the end of input, whichever comes first.

You can also use C-style comments, which begin with "/*" and extend up to and including the next "*/" character
pair or until the end of input, whichever comes first. C-style comments can span multiple lines.

sqlite>.help -- This is a single line comment

SQLite Statements
All the SQLite statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE, ALTER,
DROP, etc., and all the statements end with a semicolon (;).

SQLite ANALYZE Statement:
ANALYZE;

or

ANALYZE database_name;

or

ANALYZE database_name.table_name;

CHAPTER

4

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite AND/OR Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION-1 {AND|OR} CONDITION-2;

SQLite ALTER TABLE Statement:
ALTER TABLE table_name ADD COLUMN column_def...;

SQLite ALTER TABLE Statement (Rename):
ALTER TABLE table_name RENAME TO new_table_name;

SQLite ATTACH DATABASE Statement:
ATTACH DATABASE 'DatabaseName' As 'Alias-Name';

SQLite BEGIN TRANSACTION Statement:
BEGIN;

or

BEGIN EXCLUSIVE TRANSACTION;

SQLite BETWEEN Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name BETWEEN val-1 AND val-2;

SQLite COMMIT Statement:
COMMIT;

SQLite CREATE INDEX Statement:
CREATE INDEX index_name

ON table_name (column_name COLLATE NOCASE);

SQLite CREATE UNIQUE INDEX Statement:
CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...columnN);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite CREATE TABLE Statement:
CREATE TABLE table_name(

 column1 datatype,

 column2 datatype,

 column3 datatype,

 columnN datatype,

 PRIMARY KEY(one or more columns)

);

SQLite CREATE TRIGGER Statement :
CREATE TRIGGER database_name.trigger_name

BEFORE INSERT ON table_name FOR EACH ROW

BEGIN

 stmt1;

 stmt2;

END;

SQLite CREATE VIEW Statement :
CREATE VIEW database_name.view_name AS

SELECT statement....;

SQLite CREATE VIRTUAL TABLE Statement:
CREATE VIRTUAL TABLE database_name.table_name USING weblog(access.log);

or

CREATE VIRTUAL TABLE database_name.table_name USING fts3();

SQLite COMMIT TRANSACTION Statement:
COMMIT;

SQLite COUNT Clause:
SELECT COUNT(column_name)

FROM table_name

WHERE CONDITION;

SQLite DELETE Statement:
DELETE FROM table_name

WHERE {CONDITION};

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite DETACH DATABASE Statement:
DETACH DATABASE 'Alias-Name';

SQLite DISTINCT Clause:
SELECT DISTINCT column1, column2....columnN

FROM table_name;

SQLite DROP INDEX Statement :
DROP INDEX database_name.index_name;

SQLite DROP TABLE Statement:
DROP TABLE database_name.table_name;

SQLite DROP VIEW Statement :
DROP INDEX database_name.view_name;

SQLite DROP TRIGGER Statement :
DROP INDEX database_name.trigger_name;

SQLite EXISTS Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name EXISTS (SELECT * FROM table_name);

SQLite EXPLAIN Statement :
EXPLAIN INSERT statement...;

or

EXPLAIN QUERY PLAN SELECT statement...;

SQLite GLOB Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name GLOB { PATTERN };

SQLite GROUP BY Clause:
SELECT SUM(column_name)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

FROM table_name

WHERE CONDITION

GROUP BY column_name;

SQLite HAVING Clause:
SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name

HAVING (arithematic function condition);

SQLite INSERT INTO Statement:
INSERT INTO table_name(column1, column2....columnN)

VALUES (value1, value2....valueN);

SQLite IN Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name IN (val-1, val-2,...val-N);

SQLite Like Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name LIKE { PATTERN };

SQLite NOT IN Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name NOT IN (val-1, val-2,...val-N);

SQLite ORDER BY Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION

ORDER BY column_name {ASC|DESC};

SQLite PRAGMA Statement:
PRAGMA pragma_name;

For example:

PRAGMA page_size;

PRAGMA cache_size = 1024;

PRAGMA table_info(table_name);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite RELEASE SAVEPOINT Statement:
RELEASE savepoint_name;

SQLite REINDEX Statement:
REINDEX collation_name;

REINDEX database_name.index_name;

REINDEX database_name.table_name;

SQLite ROLLBACK Statement:
ROLLBACK;

or

ROLLBACK TO SAVEPOINT savepoint_name;

SQLite SAVEPOINT Statement:
SAVEPOINT savepoint_name;

SQLite SELECT Statement:
SELECT column1, column2....columnN

FROM table_name;

SQLite UPDATE Statement:
UPDATE table_name

SET column1 = value1, column2 = value2....columnN=valueN

[WHERE CONDITION];

SQLite VACUUM Statement:
VACUUM;

SQLite WHERE Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Data Type

SQLite data type is an attribute that specifies type of data of any object. Each column, variable and

expression has related data type in SQLite.

You would use these data types while creating your tables. SQLite uses a more general dynamic type system. In
SQLite, the datatype of a value is associated with the value itself, not with its container.

SQLite Storage Classes:
Each value stored in an SQLite database has one of the following storage classes:

Storage Class Description

NULL The value is a NULL value.

INTEGER
The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on the
magnitude of the value.

REAL The value is a floating point value, stored as an 8-byte IEEE floating point number.

TEXT
The value is a text string, stored using the database encoding (UTF-8, UTF-16BE or
UTF-16LE)

BLOB The value is a blob of data, stored exactly as it was input.

SQLite storage class is slightly more general than a datatype. The INTEGER storage class, for example, includes
6 different integer datatypes of different lengths.

SQLite Affinity Type:
SQLite supports the concept of type affinity on columns. Any column can still store any type of data but the
preferred storage class for a column is called its affinity. Each table column in an SQLite3 database is assigned

one of the following type affinities:

Affinity Description

TEXT This column stores all data using storage classes NULL, TEXT or BLOB.

NUMERIC This column may contain values using all five storage classes.

INTEGER Behaves the same as a column with NUMERIC affinity with an exception in a CAST

CHAPTER

5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

expression.

REAL
Behaves like a column with NUMERIC affinity except that it forces integer values into
floating point representation

NONE
A column with affinity NONE does not prefer one storage class over another and no
attempt is made to coerce data from one storage class into another.

SQLite Affinity and Type Names:
Following table lists down various data type names which can be used while creating SQLite3 tables and
corresponding applied affinity also has been shown:

Data Type Affinity

 INT

 INTEGER

 TINYINT

 SMALLINT

 MEDIUMINT

 BIGINT

 UNSIGNED BIG INT

 INT2

 INT8

INTEGER

 CHARACTER(20)

 VARCHAR(255)

 VARYING CHARACTER(255)

 NCHAR(55)

 NATIVE CHARACTER(70)

 NVARCHAR(100)

 TEXT

 CLOB

TEXT

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 BLOB

 no datatype specified

NONE

 REAL

 DOUBLE

 DOUBLE PRECISION

 FLOAT

REAL

 NUMERIC

 DECIMAL(10,5)

 BOOLEAN

 DATE

 DATETIME

NUMERIC

Boolean Datatype:
SQLite does not have a separate Boolean storage class. Instead, Boolean values are stored as integers 0 (false)
and 1 (true).

Date and Time Datatype:
SQLite does not have a separate storage class for storing dates and/or times, but SQLite is capable of storing
dates and times as TEXT, REAL or INTEGER values.

Storage Class Date Formate

TEXT A date in a format like "YYYY-MM-DD HH:MM:SS.SSS".

REAL The number of days since noon in Greenwich on November 24, 4714 B.C.

INTEGER The number of seconds since 1970-01-01 00:00:00 UTC.

You can chose to store dates and times in any of these formats and freely convert between formats using the
built-in date and time functions.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Create Database

The SQLite sqlite3 command is used to create new SQLite database. You do not need to have any

special privilege to create a database.

Syntax:
Basic syntax of sqlite3 command is as follows:

$sqlite3 DatabaseName.db

Always, database name should be unique within the RDBMS.

Example:
If you want to create new database <testDB.db>, then SQLite3 statement would be as follows:

$sqlite3 testDB.db

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

Above command will create a file testDB.db in the current directory. This file will be used as database by SQLite
engine. If you have noticed while creating database, sqlite3 command will provide a sqlite>prompt after creating

database file successfully.

Once a database is created, you can check it in the list of databases using SQLite .databases command as

follows:

sqlite>.databases

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

You will use SQLite .quit command to come out of the sqlite prompt as follows:

sqlite>.quit

$

CHAPTER

6

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The .dump Command
You can use .dump dot command to export complete database in a text file using SQLite command at command

prompt as follows:

$sqlite3 testDB.db .dump > testDB.sql

Above command will convert the entire contents of testDB.db database into SQLite statements and dump it into
ASCII text file testDB.sql. You can do restoration from the generated testDB.sql in simple way as follows:

$sqlite3 testDB.db < testDB.sql

At this moment your database is empty, so you can try above two procedures once you have few tables and data
in your database. For now, let's proceed to next chapter.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Attach Database

Consider a case when you have multiple databases available and you want to use any one of them at a

time. SQLite ATTACH DTABASE statement is used to select a particular database, and after this command, all

SQLite statements will be executed under the attached database.

Syntax:
Basic syntax of SQLite ATTACH DATABASE statement is as follows:

ATTACH DATABASE 'DatabaseName' As 'Alias-Name';

Above command will also create a database in case database is already not created, otherwise it will just attach
database file name with logical database 'Alias-Name'.

Example:
If you want to attach an existing database testDB.db, then ATTACH DATABASE statement would be as follows:

sqlite> ATTACH DATABASE 'testDB.db' as 'TEST';

Use SQLite .database command to display attached database.

sqlite> .database

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

The database names main and temp are reserved for the primary database and database to hold temporary

tables and other temporary data objects. Both of these database names exist for every database connection and
should not be used for attachment, otherwise you will get a warning message something as follows:

sqlite> ATTACH DATABASE 'testDB.db' as 'TEMP';

Error: database TEMP is already in use

sqlite> ATTACH DATABASE 'testDB.db' as 'main';

Error: database TEMP is already in use

CHAPTER

7

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Detach Database

SQLite DETACH DTABASE statement is used to detach and dissociate a named database from a

database connection which was previously attached using ATTACH statement. If the same database file has
been attached with multiple aliases, then DETACH command will disconnect only given name and rest of the
attachement will still continue. You cannot detach the main or temp databases.

If the database is an in-memory or temporary database, the database will be destroyed and the contents will be
lost.

Syntax:
Basic syntax of SQLite DETACH DATABASE 'Alias-Name' statement is as follows:

DETACH DATABASE 'Alias-Name';

Here 'Alias-Name' is the same alias, which you had used while attaching database using ATTACH statement.

Example:
Consider you have a database, which you created in previous chapter and attached it with 'test' and 'currentDB'
as we can see using .database command:

sqlite>.databases

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

3 currentDB /home/sqlite/testDB.db

Now let's try to detach 'currentDB' from testDB.db as follows:

sqlite> DETACH DATABASE 'currentDB';

Now, if you will check current attachment, you will find that testDB.db is still connected with 'test' and 'main'.

sqlite>.databases

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

CHAPTER

8

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Create Table

The SQLite CREATE TABLE statement is used to create a new table in any of the given database.

Creating a basic table involves naming the table and defining its columns and each column's data type.

Syntax:
Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE database_name.table_name(

 column1 datatype PRIMARY KEY(one or more columns),

 column2 datatype,

 column3 datatype,

 columnN datatype,

);

CREATE TABLE is the keyword telling the database system to create a new table. The unique name or identifier
for the table follows the CREATE TABLE statement. Optionally you can specify database_name along
with table_name.

Example:
Following is an example, which creates a COMPANY table with ID as primary key and NOT NULL are the
constraints showing that these fields can not be NULL while creating records in this table:

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Let us create one more table, which we will use in our exercises in subsequent chapters:

sqlite> CREATE TABLE DEPARTMENT(

 ID INT PRIMARY KEY NOT NULL,

 DEPT CHAR(50) NOT NULL,

 EMP_ID INT NOT NULL

);

CHAPTER

9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

You can verify if your table has been created successfully using SQLIte command .tables command, which will

be used to list down all the tables in an attached database.

sqlite>.tables

COMPANY DEPARTMENT

Here, you can see COMPANY table twice because it's showing COMPANY table for main database and
test.COMPANY table for 'test' alias created for your testDB.db. You can get complete information about a table
using SQLite .schema command as follows:

sqlite>.schema COMPANY

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Drop Table

The SQLite DROP TABLE statement is used to remove a table definition and all associated data, indexes,

triggers, constraints and permission specifications for that table.

You have to be careful while using this command because once a table is deleted then all the information
available in the table would also be lost forever.

Syntax:
Basic syntax of DROP TABLE statement is as follows. You can optionally specify database name along with table
name as follows:

DROP TABLE database_name.table_name;

Example:
Let us first verify COMPANY table and then we would delete it from the database.

sqlite>.tables

COMPANY test.COMPANY

This means COMPANY table is available in the database, so let us drop it as follows:

sqlite>DROP TABLE COMPANY;

sqlite>

Now, if you would try .TABLES command, then you will not find COMPANY table anymore:

sqlite>.tables

sqlite>

It shows nothing means the table from your database has been dropped successfully.

CHAPTER

10

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Insert Query

The SQLite INSERT INTO Statement is used to add new rows of data into a table in the database.

Syntax:
There are two basic syntaxes of INSERT INTO statement as follows:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]

VALUES (value1, value2, value3,...valueN);

Here, column1, column2,...columnN are the names of the columns in the table into which you want to insert data.

You may not need to specify the column(s) name in the SQLite query if you are adding values for all the columns
of the table. But make sure the order of the values is in the same order as the columns in the table. The SQLite
INSERT INTO syntax would be as follows:

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Example:
Consider you already have created COMPANY table in your testDB.db as follows:

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Now, following statements would create six records in COMPANY table:

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

CHAPTER

11

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Kim', 22, 'South-Hall', 45000.00);

You can create a record in COMPANY table using second syntax as follows:

INSERT INTO COMPANY VALUES (7, 'James', 24, 'Houston', 10000.00);

All the above statements would create following records in COMPANY table. Next chapter will teach you how to
display all these records from a table.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Populate one table using another table:
You can populate data into a table through select statement over another table provided another table has a set
of fields, which are required to populate first table. Here is the syntax:

INSERT INTO first_table_name [(column1, column2, ... columnN)]

 SELECT column1, column2, ...columnN

 FROM second_table_name

 [WHERE condition];

For now, you can skip above statement, first let's learn SELECT and WHERE clauses, which will be covered in
subsequent chapters.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Select Query

SQLite SELECT statement is used to fetch the data from a SQLite database table which returns data in the

form of result table. These result tables are also called result-sets.

Syntax:
The basic syntax of SQLite SELECT statement is as follows:

SELECT column1, column2, columnN FROM table_name;

Here, column1, column2...are the fields of a table, whose values you want to fetch. If you want to fetch all the
fields available in the field, then you can use the following syntax:

SELECT * FROM table_name;

Example:
Consider COMPANY table is having following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example to fetch and display all these records using SELECT statement. Here, first three
commands have been used to set properly formatted output.

sqlite>.header on

sqlite>.mode column

sqlite> SELECT * FROM COMPANY;

Finally, you will get the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

CHAPTER

12

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

If you want to fetch only selected fields of COMPANY table, then use the following query:

sqlite> SELECT ID, NAME, SALARY FROM COMPANY;

Above query will produce the following result:

ID NAME SALARY

---------- ---------- ----------

1 Paul 20000.0

2 Allen 15000.0

3 Teddy 20000.0

4 Mark 65000.0

5 David 85000.0

6 Kim 45000.0

7 James 10000.0

Setting output column width:
Sometimes, you will face a problem related to truncated output in case of .mode column which happens because

of default width of the column to be displayed. What you can do is that you can set column displayable column
width using .width num, num.... command as follows:

sqlite>.width 10, 20, 10

sqlite>SELECT * FROM COMPANY;

Above .width command sets first column width to 10, second column width to 20 and third column width to 10. So

finally above SELECT statement will give the following result:

ID NAME AGE ADDRESS SALARY

---------- -------------------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Schema Information:
Because all the dot commads are available at SQLite prompt only, so while doing your programming with

SQLite, you will use the following statement to list down all the tables created in your database using the following
SELECT statement with sqlite_master table:

sqlite> SELECT tbl_name FROM sqlite_master WHERE type = 'table';

Assuming you have only COMPANY table in your testDB.db, this will produce the following result:

tbl_name

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

COMPANY

You can list down complete information about COMPANY table as follows:

sqlite> SELECT sql FROM sqlite_master WHERE type = 'table' AND tbl_name =

'COMPANY';

Assuming you have only COMPANY table in your testDB.db, this will produce the following result:

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Operators

What is an operator in SQLite?

An operator is a reserved word or a character used primarily in an SQLite statement's WHERE clause to

perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQLite statement and to serve as conjunctions for multiple
conditions in a statement.

 Arithmetic operators

 Comparison operators

 Logical operators

 Bitwise operators

SQLite Arithmetic Operators:
Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the operator
a + b will
give 30

- Subtraction - Subtracts right hand operand from left hand operand
a - b will
give -10

* Multiplication - Multiplies values on either side of the operator
a * b will
give 200

/ Division - Divides left hand operand by right hand operand
b / a will
give 2

% Modulus - Divides left hand operand by right hand operand and returns remainder
b % a will
give 0

CHAPTER

13

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example
Here are simple examples showing usage of SQLite Arithmetic Operators:

sqlite> .mode line

sqlite> select 10 + 20;

10 + 20 = 30

sqlite> select 10 - 20;

10 - 20 = -10

sqlite> select 10 * 20;

10 * 20 = 200

sqlite> select 10 / 5;

10 / 5 = 2

sqlite> select 12 % 5;

12 % 5 = 2

SQLite Comparison Operators:
Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or not, if yes then condition becomes
true.

(a == b)
is not
true.

=
Checks if the values of two operands are equal or not, if yes then condition becomes
true.

(a = b) is
not true.

!=
Checks if the values of two operands are equal or not, if values are not equal then
condition becomes true.

(a != b)
is true.

<>
Checks if the values of two operands are equal or not, if values are not equal then
condition becomes true.

(a <> b)
is true.

>
Checks if the value of left operand is greater than the value of right operand, if yes
then condition becomes true.

(a > b) is
not true.

<
Checks if the value of left operand is less than the value of right operand, if yes then
condition becomes true.

(a < b) is
true.

>=
Checks if the value of left operand is greater than or equal to the value of right
operand, if yes then condition becomes true.

(a >= b)
is not
true.

<=
Checks if the value of left operand is less than or equal to the value of right operand, if
yes then condition becomes true.

(a <= b)
is true.

!<
Checks if the value of left operand is not less than the value of right operand, if yes
then condition becomes true.

(a !< b)
is false.

!> Checks if the value of left operand is not greater than the value of right operand, if yes (a !> b)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

then condition becomes true. is true.

Example

Consider COMPANY table has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Below example will show the usage of various SQLite Comparison Operators.

Here, we have used WHERE clause, which will be explained in a separate chapter but for now you can

understand that WHERE clause is used to put a conditional statement along with SELECT statement.

Following SELECT statement lists down all the records having SALARY greater than 50,000.00:

sqlite> SELECT * FROM COMPANY WHERE SALARY > 50000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records having SALARY equal to 20,000.00:

sqlite> SELECT * FROM COMPANY WHERE SALARY = 20000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

Following SELECT statement lists down all the records having SALARY not equal to 20,000.00:

sqlite> SELECT * FROM COMPANY WHERE SALARY != 20000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records having SALARY not equal to 20,000.00:

sqlite> SELECT * FROM COMPANY WHERE SALARY <> 20000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records having SALARY greater than or equal to 65,000.00:

sqlite> SELECT * FROM COMPANY WHERE SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

SQLite Logical Operators:
Here is a list of all the logical operators available in SQLite.

Operator Description

AND
The AND operator allows the existence of multiple conditions in an SQL statement's WHERE
clause.

BETWEEN
The BETWEEN operator is used to search for values that are within a set of values, given the
minimum value and the maximum value.

EXISTS
The EXISTS operator is used to search for the presence of a row in a specified table that meets
certain criteria.

IN The IN operator is used to compare a value to a list of literal values that have been specified.

NOT IN
The negation of IN operator which is used to compare a value to a list of literal values that have
been specified.

LIKE The LIKE operator is used to compare a value to similar values using wildcard operators.

GLOB
The GLOB operator is used to compare a value to similar values using wildcard operators. Also,
GLOB is case sensitive, unlike LIKE.

NOT
The NOT operator reverses the meaning of the logical operator with which it is used. Eg. NOT
EXISTS, NOT BETWEEN, NOT IN, etc. This is negate operator.

OR The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

IS The IS operator work like =

IS NOT The IS operator work like !=

|| Adds two different strings and make new one.

UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness (no duplicates).

Example
Consider COMPANY table has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Here are simple examples showing usage of SQLite Logical Operators. Following SELECT statement lists down
all the records where AGE is greater than or equal to 25 and salary is greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is greater than or equal to 25 OR salary is

greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL which means all the records
because none of the record is having AGE equal to NULL:

sqlite> SELECT * FROM COMPANY WHERE AGE IS NOT NULL;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does not matter what comes
after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME LIKE 'Ki%';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does not matter what comes
after 'Ki':

sqlite> SELECT * FROM COMPANY WHERE NAME GLOB 'Ki*';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27:

sqlite> SELECT * FROM COMPANY WHERE AGE IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor 27:

sqlite> SELECT * FROM COMPANY WHERE AGE NOT IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25 AND 27:

sqlite> SELECT * FROM COMPANY WHERE AGE BETWEEN 25 AND 27;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query where sub-query finds all the records with AGE field
having SALARY > 65000 and later WHERE clause is being used along with EXISTS operator to list down all the
records where AGE from the outside query exists in the result returned by sub-query:

sqlite> SELECT AGE FROM COMPANY

 WHERE EXISTS (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

AGE

32

25

23

25

27

22

24

Following SELECT statement makes use of SQL sub-query where subquery finds all the records with AGE field
having SALARY > 65000 and later WHERE clause is being used along with > operator to list down all the records
where AGE from outside query is greater than the age in the result returned by sub-query:

sqlite> SELECT * FROM COMPANY

 WHERE AGE > (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

SQLite Bitwise Operators:
Bitwise operator works on bits and perform bit-by-bit operation. The truth table for & and | is as follows:

P Q p & q p | q

0 0 0 0

0 1 0 1

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

1 1 1 1

1 0 0 1

Assume if A = 60; and B = 13; now in binary format, they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

~A = 1100 0011

The Bitwise operators supported by SQLite language are listed in the following table. Assume variable A holds 60
and variable B holds 13, then:

Operator Description Example

&
Binary AND Operator copies a bit to the result if it
exists in both operands.

(A & B) will give 12 which is 0000 1100

|
Binary OR Operator copies a bit if it exists in either
operand.

(A | B) will give 61 which is 0011 1101

~
Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

(~A) will give -60 which is 1100 0011

<<
Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 will give 240 which is 1111 0000

>>
Binary Right Shift Operator. The left operands
value is moved right by the number of bits
specified by the right operand.

A >> 2 will give 15 which is 0000 1111

Example
Here are simple examples showing usage of SQLite Bitwise Operators:

sqlite> .mode line

sqlite> select 60 | 13;

60 | 13 = 61

sqlite> select 60 & 13;

60 & 13 = 12

sqlite> select 60 ^ 13;

10 * 20 = 200

sqlite> select (~60);

(~60) = -61

sqlite> select (60 << 2);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

(60 << 2) = 240

sqlite> select (60 >> 2);

(60 >> 2) = 15

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Expressions

An expression is a combination of one or more values, operators and SQL functions that evaluate to a

value.

SQL EXPRESSIONs are like formulas and they are written in query language. You can also use to query the
database for specific set of data.

Syntax:
Consider the basic syntax of the SELECT statement as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [CONTION | EXPRESSION];

There are different types of SQLite expressions, which are mentioned below:

SQLite - Boolean Expressions:
SQLite Boolean Expressions fetch the data on the basis of matching single value. Following is the syntax:

SELECT column1, column2, columnN

FROM table_name

WHERE SINGLE VALUE MATCHTING EXPRESSION;

Consider COMPANY table has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Here is simple examples showing usage of SQLite Boolean Expressions:

sqlite> SELECT * FROM COMPANY WHERE SALARY = 10000;

CHAPTER

14

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 James 24 Houston 10000.0

SQLite - Numeric Expression:
These expressions are used to perform any mathematical operation in any query. Following is the syntax:

SELECT numerical_expression as OPERATION_NAME

[FROM table_name WHERE CONDITION] ;

Here, numerical_expression is used for mathematical expression or any formula. Following is a simple example
showing usage of SQLite Numeric Expressions:

sqlite> SELECT (15 + 6) AS ADDITION

ADDITION = 21

There are several built-in functions like avg(), sum(), count(), etc., to perform what is known as aggregate data
calculations against a table or a specific table column.

sqlite> SELECT COUNT(*) AS "RECORDS" FROM COMPANY;

RECORDS = 7

SQLite - Date Expressions:
Date Expressions return current system date and time values and these expressions will be used in various data
manipulations.

sqlite> SELECT CURRENT_TIMESTAMP;

CURRENT_TIMESTAMP = 2013-03-17 10:43:35

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Where Clause

The SQLite WHERE clause is used to specify a condition while fetching the data from one table or multiple

tables.

If the given condition is satisfied, means true, then it returns specific value from the table. You would use WHERE
clause to filter the records and fetching only necessary records.

The WHERE clause not only used in SELECT statement, but it is also used in UPDATE, DELETE statement, etc.,
which we would study in subsequent chapters.

Syntax:
The basic syntax of SQLite SELECT statement with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition]

Example:
You can specify a condition using Comparision or Logical Operators like >, <, =, LIKE, NOT, etc. Consider
COMPANY table has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Here are simple examples showing usage of SQLite Logical Operators. Following SELECT statement lists down
all the records where AGE is greater than or equal to 25 AND salary is greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

CHAPTER

15

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/sqlite-operators.htm

TUTORIALS POINT

Simply Easy Learning

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is greater than or equal to 25 OR salary is

greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL which means all the records
because none of the record is having AGE equal to NULL:

sqlite> SELECT * FROM COMPANY WHERE AGE IS NOT NULL;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does not matter what comes
after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME LIKE 'Ki%';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does not matter what comes
after 'Ki':

sqlite> SELECT * FROM COMPANY WHERE NAME GLOB 'Ki*';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27:

sqlite> SELECT * FROM COMPANY WHERE AGE IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor 27:

sqlite> SELECT * FROM COMPANY WHERE AGE NOT IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25 AND 27:

sqlite> SELECT * FROM COMPANY WHERE AGE BETWEEN 25 AND 27;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query where sub-query finds all the records with AGE field
having SALARY > 65000 and later WHERE clause is being used along with EXISTS operator to list down all the
records where AGE from the outside query exists in the result returned by sub-query:

sqlite> SELECT AGE FROM COMPANY

 WHERE EXISTS (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

AGE

32

25

23

25

27

22

24

Following SELECT statement makes use of SQL sub-query where sub-query finds all the records with AGE field
having SALARY > 65000 and later WHERE clause is being used along with > operator to list down all the records
where AGE from outside query is greater than the age in the result returned by sub-query:

sqlite> SELECT * FROM COMPANY

 WHERE AGE > (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite AND and OR Operator

The SQLite AND and OR operators are used to combine multiple conditions to narrow down selected data

in an SQLite statement. These two operators are called conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the same SQLite
statement.

The AND Operator:
The AND operator allows the existence of multiple conditions in an SQLite statement's WHERE clause. While

using AND operator, complete condition will be assumed true when all the conditions are true. For example,
[condition1] AND [condition2] will be true only when both condition1 and condition2 are true.

Syntax:
The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken by the SQLite statement,
whether it be a transaction or query, all conditions separated by the AND must be TRUE.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE is greater than or equal to 25 ANDsalary is

greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

CHAPTER

16

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

The OR Operator:
The OR operator is also used to combine multiple conditions in an SQLite statement's WHERE clause. While
using OR operator, complete condition will be assumed true when at least any of the conditions is true. For

example, [condition1] OR [condition2] will be true if either condition1 or condition2 is true.

Syntax:
The basic syntax of OR operator with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by the SQLite statement,
whether it be a transaction or query, only any ONE of the conditions separated by the OR must be TRUE.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE is greater than or equal to 25 ORsalary is

greater than or equal to 65000.00:

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Update Query

The SQLite UPDATE Query is used to modify the existing records in a table. You can use WHERE clause

with UPDATE query to update selected rows, otherwise all the rows would be updated.

Syntax:
The basic syntax of UPDATE query with WHERE clause is as follows:

UPDATE table_name

SET column1 = value1, column2 = value2...., columnN = valueN

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would update ADDRESS for a customer whose ID is 6:

sqlite> UPDATE COMPANY SET ADDRESS = 'Texas' WHERE ID = 6;

Now, COMPANY table would have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

CHAPTER

17

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

6 Kim 22 Texas 45000.0

7 James 24 Houston 10000.0

If you want to modify all ADDRESS and SALARY column values in COMPANY table, you do not need to use
WHERE clause and UPDATE query would be as follows:

sqlite> UPDATE COMPANY SET ADDRESS = 'Texas', SALARY = 20000.00;

Now, COMPANY table will have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 Texas 20000.0

2 Allen 25 Texas 20000.0

3 Teddy 23 Texas 20000.0

4 Mark 25 Texas 20000.0

5 David 27 Texas 20000.0

6 Kim 22 Texas 20000.0

7 James 24 Texas 20000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Delete Query

The SQLite DELETE Query is used to delete the existing records from a table. You can use WHERE

clause with DELETE query to delete selected rows, otherwise all the records would be deleted.

Syntax:
The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would DELETE a customer whose ID is 7:

sqlite> DELETE FROM COMPANY WHERE ID = 7;

Now, COMPANY table will have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

CHAPTER

18

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

If you want to DELETE all the records from COMPANY table, you do not need to use WHERE clause with
DELETE query, which would be as follows:

sqlite> DELETE FROM COMPANY;

Now, COMPANY table does not have any record because all the records have been deleted by DELETE
statement.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Like Clause

The SQLite LIKE operator is used to match text values against a pattern using wildcards. If the search

expression can be matched to the pattern expression, the LIKE operator will return true, which is 1. There are two
wildcards used in conjunction with the LIKE operator:

 The percent sign (%)

 The underscore (_)

The percent sign represents zero, one, or multiple numbers or characters. The underscore represents a single
number or character. These symbols can be used in combinations.

Syntax:
The basic syntax of % and _ is as follows:

SELECT FROM table_name

WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name

WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name

WHERE column LIKE 'XXXX_'

or

SELECT FROM table_name

WHERE column LIKE '_XXXX'

or

SELECT FROM table_name

WHERE column LIKE '_XXXX_'

You can combine N number of conditions using AND or OR operators. Here XXXX could be any numeric or string
value.

CHAPTER

19

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example:
Here are number of examples showing WHERE part having different LIKE clause with '%' and '_' operators:

Statement Description

WHERE SALARY LIKE '200%' Finds any values that start with 200

WHERE SALARY LIKE '%200%' Finds any values that have 200 in any position

WHERE SALARY LIKE '_00%' Finds any values that have 00 in the second and third positions

WHERE SALARY LIKE '2_%_%' Finds any values that start with 2 and are at least 3 characters in length

WHERE SALARY LIKE '%2' Finds any values that end with 2

WHERE SALARY LIKE '_2%3' Finds any values that have a 2 in the second position and end with a 3

WHERE SALARY LIKE '2___3' Finds any values in a five-digit number that start with 2 and end with 3

Let us take a real example, consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would display all the records from COMPANY table where AGE starts with 2:

sqlite> SELECT * FROM COMPANY WHERE AGE LIKE '2%';

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would display all the records from COMPANY table where ADDRESS will have a
hyphen (-) inside the text:

sqlite> SELECT * FROM COMPANY WHERE ADDRESS LIKE '%-%';

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

6 Kim 22 South-Hall 45000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Glob Clause

The SQLite GLOB operator is used to match only text values against a pattern using wildcards. If the

search expression can be matched to the pattern expression, the GLOB operator will return true, which is 1.
Unlike LIKE operator, GLOB is case sensitive and it follows syntax of UNIX for specifying the following wildcards.

 The asterisk sign (*)

 The question mark (?)

The asterisk sign represents zero or multiple numbers or characters. The ? represents a single number or
character.

Syntax:
The basic syntax of * and ? is as follows:

SELECT FROM table_name

WHERE column GLOB 'XXXX*'

or

SELECT FROM table_name

WHERE column GLOB '*XXXX*'

or

SELECT FROM table_name

WHERE column GLOB 'XXXX?'

or

SELECT FROM table_name

WHERE column GLOB '?XXXX'

or

SELECT FROM table_name

WHERE column GLOB '?XXXX?'

or

CHAPTER

20

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SELECT FROM table_name

WHERE column GLOB '????'

You can combine N number of conditions using AND or OR operators. Here XXXX could be any numberic or
string value.

Example:
Here are number of examples showing WHERE part having different LIKE clause with '*' and '?' operators:

Statement Description

WHERE SALARY GLOB '200*' Finds any values that start with 200

WHERE SALARY GLOB '*200*' Finds any values that have 200 in any position

WHERE SALARY GLOB '?00*' Finds any values that have 00 in the second and third positions

WHERE SALARY GLOB '2??' Finds any values that start with 2 and are at least 3 characters in length

WHERE SALARY GLOB '*2' Finds any values that end with 2

WHERE SALARY GLOB '?2*3' Finds any values that have a 2 in the second position and end with a 3

WHERE SALARY GLOB '2???3' Finds any values in a five-digit number that start with 2 and end with 3

Let us take a real example, consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would display all the records from COMPANY table where AGE starts with 2:

sqlite> SELECT * FROM COMPANY WHERE AGE GLOB '2*';

This would produce following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would display all the records from COMPANY table where ADDRESS will have a
hyphen (-) inside the text:

sqlite> SELECT * FROM COMPANY WHERE ADDRESS GLOB '*-*';

This would produce the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

6 Kim 22 South-Hall 45000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite LIMIT Clause

The SQLite LIMIT clause is used to limit the data amount returned by the SELECT statement.

Syntax:
The basic syntax of SELECT statement with LIMIT clause is as follows:

SELECT column1, column2, columnN

FROM table_name

LIMIT [no of rows]

Following is the syntax of LIMIT clause when it is used along with OFFSET clause:

SELECT column1, column2, columnN

FROM table_name

LIMIT [no of rows] OFFSET [row num]

SQLite engine will return rows starting from the next row to the given OFFSET as shown below in the last
example.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which limits the row in the table according to the number of rows you want to fetch from
table:

sqlite> SELECT * FROM COMPANY LIMIT 6;

This would produce the following result:

CHAPTER

21

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

But in certain situations, you may need to pick up a set of records from a particular offset. Here is an example,
which picks up 3 records starting from 3rd position:

sqlite> SELECT * FROM COMPANY LIMIT 3 OFFSET 2;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Order By Clause

The SQLite ORDER BY clause is used to sort the data in ascending or descending order, based on one or

more columns.

Syntax:
The basic syntax of ORDER BY clause is as follows:

SELECT column-list

FROM table_name

[WHERE condition]

[ORDER BY column1, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column you are using to sort,
that column should be available in column-list.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which would sort the result in descending order by SALARY:

sqlite> SELECT * FROM COMPANY ORDER BY SALARY ASC;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

7 James 24 Houston 10000.0

2 Allen 25 Texas 15000.0

1 Paul 32 California 20000.0

CHAPTER

22

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following is an example, which would sort the result in descending order by NAME and SALARY:

sqlite> SELECT * FROM COMPANY ORDER BY NAME, SALARY ASC;

This would produce following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

5 David 27 Texas 85000.0

7 James 24 Houston 10000.0

6 Kim 22 South-Hall 45000.0

4 Mark 25 Rich-Mond 65000.0

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

Following is an example, which would sort the result in descending order by NAME:

sqlite> SELECT * FROM COMPANY ORDER BY NAME DESC;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

3 Teddy 23 Norway 20000.0

1 Paul 32 California 20000.0

4 Mark 25 Rich-Mond 65000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

5 David 27 Texas 85000.0

2 Allen 25 Texas 15000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Group By Clause

The SQLite GROUP BY clause is used in collaboration with the SELECT statement to arrange identical

data into groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER BY clause.

Syntax:
The basic syntax of GROUP BY clause is given below. The GROUP BY clause must follow the conditions in the
WHERE clause and must precede the ORDER BY clause if one is used.

SELECT column-list

FROM table_name

WHERE [conditions]

GROUP BY column1, column2....columnN

ORDER BY column1, column2....columnN

You can use more than one column in the GROUP BY clause. Make sure whatever column you are using to
group, that column should be available in column-list.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

If you want to know the total amount of salary on each customer, then GROUP BY query would be as follows:

sqlite> SELECT NAME, SUM(SALARY) FROM COMPANY GROUP BY NAME;

This would produce following result:

CHAPTER

23

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

NAME SUM(SALARY)

---------- -----------

Allen 15000.0

David 85000.0

James 10000.0

Kim 45000.0

Mark 65000.0

Paul 20000.0

Teddy 20000.0

Now, let us create three more records in COMPANY table using the following INSERT statements:

INSERT INTO COMPANY VALUES (8, 'Paul', 24, 'Houston', 20000.00);

INSERT INTO COMPANY VALUES (9, 'James', 44, 'Norway', 5000.00);

INSERT INTO COMPANY VALUES (10, 'James', 45, 'Texas', 5000.00);

Now, our table has the following records with duplicate names:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

8 Paul 24 Houston 20000.0

9 James 44 Norway 5000.0

10 James 45 Texas 5000.0

Again, let us use the same statement to group-by all the records using NAME column as follows:

sqlite> SELECT NAME, SUM(SALARY) FROM COMPANY GROUP BY NAME ORDER BY NAME;

This would produce the following result:

NAME SUM(SALARY)

---------- -----------

Allen 15000

David 85000

James 20000

Kim 45000

Mark 65000

Paul 40000

Teddy 20000

Let us use ORDER BY clause along with GROUP BY clause as follows:

sqlite> SELECT NAME, SUM(SALARY)

 FROM COMPANY GROUP BY NAME ORDER BY NAME DESC;

This would produce the following result:

NAME SUM(SALARY)

---------- -----------

Teddy 20000

Paul 40000

Mark 65000

Kim 45000

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

James 20000

David 85000

Allen 15000

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Having Clause

The HAVING clause enables you to specify conditions that filter which group results appear in the final

results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause places conditions
on groups created by the GROUP BY clause.

Syntax:
The following is the position of the HAVING clause in a SELECT query:

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also precede the ORDER BY clause
if used. The following is the syntax of the SELECT statement, including the HAVING clause:

SELECT column1, column2

FROM table1, table2

WHERE [conditions]

GROUP BY column1, column2

HAVING [conditions]

ORDER BY column1, column2

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

CHAPTER

24

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

7 James 24 Houston 10000.0

8 Paul 24 Houston 20000.0

9 James 44 Norway 5000.0

10 James 45 Texas 5000.0

Following is the example, which would display record for which name count is less than 2:

sqlite > SELECT * FROM COMPANY GROUP BY name HAVING count(name) < 2;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000

5 David 27 Texas 85000

6 Kim 22 South-Hall 45000

4 Mark 25 Rich-Mond 65000

3 Teddy 23 Norway 20000

Following is the example, which would display record for which name count is greater than 2:

sqlite > SELECT * FROM COMPANY GROUP BY name HAVING count(name) > 2;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

10 James 45 Texas 5000

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Distinct Keyword

The SQLite DISTINCT keyword is used in conjunction with SELECT statement to eliminate all the

duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While fetching such records, it
makes more sense to fetch only unique records instead of fetching duplicate records.

Syntax:
The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows:

SELECT DISTINCT column1, column2,.....columnN

FROM table_name

WHERE [condition]

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

8 Paul 24 Houston 20000.0

9 James 44 Norway 5000.0

10 James 45 Texas 5000.0

First, let us see how the following SELECT query returns duplicate salary records:

sqlite> SELECT name FROM COMPANY;

This would produce the following result:

NAME

CHAPTER

25

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Paul

Allen

Teddy

Mark

David

Kim

James

Paul

James

James

Now, let us use DISTINCT keyword with the above SELECT query and see the result:

sqlite> SELECT DISTINCT name FROM COMPANY;

This would produce the following result, where we do not have any duplicate entry:

NAME

Paul

Allen

Teddy

Mark

David

Kim

James

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite PRAGMA

The SQLite PRAGMA command is a special command to be used to control various environmental

variables and state flags within the SQLite environment. A PRAGMA value can be read and it can also be set
based on requirements.

Syntax:
To query the current PRAGMA value, just provide the name of the pragma:

PRAGMA pragma_name;

To set a new value for PRAGMA, you will use the following syntax:

PRAGMA pragma_name = value;

The set mode can be either the name or the integer equivalent but the returned value will always be an integer.

auto_vacuum Pragma
The auto_vacuum pragma gets or sets the auto-vacuum mode. Following is the simple syntax:

PRAGMA [database.]auto_vacuum;

PRAGMA [database.]auto_vacuum = mode;

Where mode can be any of the following:

Pragma Value Description

0 or NONE
Auto-vacuum is disabled. This is default mode which means that a database file will
never shrink in size unless it is manually vacuumed using the VACUUM command.

1 or FULL
Auto-vacuum is enabled and fully automatic which allows a database file to shrink as
data is removed from the database.

2 or INCREMENTAL
Auto-vacuum is enabled but must be manually activated. In this mode the reference
data is maintained, but free pages are simply put on the free list. These pages can be
recovered using the incremental_vacuum pragmaany time.

CHAPTER

26

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

cache_size Pragma
The cache_size pragma can get or temporarily set the maximum size of the in-memory page cache. Following is

the simple syntax:

PRAGMA [database.]cache_size;

PRAGMA [database.]cache_size = pages;

The pages value represents the number of pages in the cache. The built-in page cache has a default size of

2,000 pages and a minimum size of 10 pages.

case_sensitive_like Pragma
The case_sensitive_like pragma controls the case-sensitivity of the built-in LIKE expression. By default, this

pragma is false which means that the built-in LIKE operator ignores letter case. Following is the simple syntax:

PRAGMA case_sensitive_like = [true|false];

There is no way to query for the current state of this pragma.

count_changes Pragma
The count_changes pragma gets or sets the return value of data manipulation statements such as INSERT,

UPDATE and DELETE. Following is the simple syntax:

PRAGMA count_changes;

PRAGMA count_changes = [true|false];

By default, this pragma is false and these statements do not return anything. If set to true, each of the mentioned
statement will return an one-column, one-row table consisting of a single integer value indicating impacted rows
by the operation.

database_list Pragma
The database_list pragma will be used to list down all the databases attached. Following is the simple syntax:

PRAGMA database_list;

This pragma will return a three-column table with one row per open or attached database giving database
sequence number, its name and file associated.

encoding Pragma
The encoding pragma controls how strings are encoded and stored in a database file. Following is the simple

syntax:

PRAGMA encoding;

PRAGMA encoding = format;

The format value can be one of UTF-8, UTF-16le, or UTF-16be.

freelist_count Pragma
The freelist_count pragma returns a single integer indicating how many database pages are currently marked as

free and available. Following is the simple syntax:

PRAGMA [database.]freelist_count;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The format value can be one of UTF-8, UTF-16le, or UTF-16be.

index_info Pragma
The index_info pragma returns information about a database index. Following is the simple syntax:

PRAGMA [database.]index_info(index_name);

The result set will contain one row for each column contained in the index giving column sequence, column index
within table and column name.

index_list Pragma
The index_list pragma lists all of the indexes associated with a table. Following is the simple syntax:

PRAGMA [database.]index_list(table_name);

The result set will contain one row for each index giving index sequence, index name and flag indicating whether
index is unique or not.

journal_mode Pragma
The journal_mode pragma gets or sets the journal mode which controls how the journal file is stored and

processed. Following is the simple syntax:

PRAGMA journal_mode;

PRAGMA journal_mode = mode;

PRAGMA database.journal_mode;

PRAGMA database.journal_mode = mode;

There are five supported journal modes:

Pragma Value Description

DELETE This is default mode. Here at the conclusion of a transaction, the journal file is deleted.

TRUNCATE The journal file is truncated to a length of zero bytes.

PERSIST
The journal file is left in place, but the header is overwritten to indicate the journal is no
longer valid.

MEMORY The journal record is held in memory, rather than on disk.

OFF No journal record is kept.

max_page_count Pragma
The max_page_count pragma gets or sets the maximum allowed page count for a database. Following is the

simple syntax:

PRAGMA [database.]max_page_count;

PRAGMA [database.]max_page_count = max_page;

The default value is 1,073,741,823 which is one giga-page which means if the default 1 KB page size, this allows
databases to grow up to one terabyte.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

page_count Pragma
The page_count pragma returns the current number of pages in database. Following is the simple syntax:

PRAGMA [database.]page_count;

The size of the database file should be page_count * page_size.

page_size Pragma
The page_size pragma gets or sets the size of the database pages. Following is the simple syntax:

PRAGMA [database.]page_size;

PRAGMA [database.]page_size = bytes;

By default, the allowed sizes are 512, 1024, 2048, 4096, 8192, 16384, and 32768 bytes. The only way to alter the
page size on an existing database is to set the page size and then immediately VACUUM the database.

parser_trace Pragma
The parser_trace pragma controls printing the debugging state as it parses SQL commands. Following is the

simple syntax:

PRAGMA parser_trace = [true|false];

By default, it is set to false but when enabled by setting it to true, the SQL parser will print its state as it parses
SQL commands.

recursive_triggers Pragma
The recursive_triggers pragma gets or sets the recursive trigger functionality. If recursive triggers are not

enabled, a trigger action will not fire another trigger. Following is the simple syntax:

PRAGMA recursive_triggers;

PRAGMA recursive_triggers = [true|false];

schema_version Pragma
The schema_version pragma gets or sets the schema version value that is stored in the database header.

Following is the simple syntax:

PRAGMA [database.]schema_version;

PRAGMA [database.]schema_version = number;

This is a 32-bit signed integer value that keeps track of schema changes. Whenever a schema-altering command
is executed (like, CREATE... or DROP...), this value is incremented.

secure_delete Pragma
The secure_delete pragma is used to control how content is deleted from the database. Following is the simple

syntax:

PRAGMA secure_delete;

PRAGMA secure_delete = [true|false];

PRAGMA database.secure_delete;

PRAGMA database.secure_delete = [true|false];

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The default value for the secure delete flag is normally off, but this can be changed with the
SQLITE_SECURE_DELETE build option.

sql_trace Pragma
The sql_trace pragma is used to dump SQL trace results to the screen. Following is the simple syntax:

PRAGMA sql_trace;

PRAGMA sql_trace = [true|false];

SQLite must be compiled with the SQLITE_DEBUG directive for this pragma to be included.

synchronous Pragma
The synchronous pragma gets or sets the current disk synchronization mode which controls how aggressively

SQLite will write data all the way out to physical storage. Following is the simple syntax:

PRAGMA [database.]synchronous;

PRAGMA [database.]synchronous = mode;

SQLite supports the following synchronisation modes:

Pragma Value Description

0 or OFF No syncs at all

1 or NORMAL Sync after each sequence of critical disk operations

2 or FULL Sync after each critical disk operation

temp_store Pragma
The temp_store pragma gets or sets the storage mode used by temporary database files. Following is the simple

syntax:

PRAGMA temp_store;

PRAGMA temp_store = mode;

SQLite supports the following storage modes:

Pragma Value Description

0 or DEFAULT Use compile-time default. Normally FILE.

1 or FILE Use file-based storage.

2 or MEMORY Use memory-based storage.

temp_store_directory Pragma
The temp_store_directory pragma gets or sets the location used for temporary database files. Following is the

simple syntax:

PRAGMA temp_store_directory;

PRAGMA temp_store_directory = 'directory_path';

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

user_version Pragma
The user_version pragma gets or sets the user-defined version value that is stored in the database header.

Following is simple syntax:

PRAGMA [database.]user_version;

PRAGMA [database.]user_version = number;

This is a 32-bit signed integer value, which can be set by the developer for version tracking purpose.

writable_schema Pragma
The writable_schema pragma gets or sets the ability to modify system tables. Following is the simple syntax:

PRAGMA writable_schema;

PRAGMA writable_schema = [true|false];

If this pragma is set, tables that start with sqlite_ can be created and modified, including the sqlite_master table.
Be careful while using pragma because it can lead to complete database corruption.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Constraints

Constraints are the rules enforced on data columns on table. These are used to limit the type of data that

can go into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Column level constraints are applied only to one column where
as table level constraints are applied to the whole table.

Following are commonly used constraints available in SQLite.

 NOT NULL Constraint: Ensures that a column cannot have NULL value.

 DEFAULT Constraint : Provides a default value for a column when none is specified.

 UNIQUE Constraint: Ensures that all values in a column are different.

 PRIMARY Key: Uniquely identified each rows/records in a database table.

 CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain conditions.

NOT NULL Constraint
By default, a column can hold NULL values. If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.

EXAMPLE:
For example, the following SQLite statement creates a new table called COMPANY and adds five columns, three
of which, ID and NAME and AGE, specify not to accept NULLs:

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

DEFAULT Constraint
The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not
provide a specific value.

CHAPTER

27

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

EXAMPLE:
For example, the following SQLite statement creates a new table called COMPANY and adds five columns. Here,
SALARY column is set to 5000.00 by default, so in case INSERT INTO statement does not provide a value for
this column, then by default, this column would be set to 5000.00.

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL DEFAULT 50000.00

);

UNIQUE Constraint
The UNIQUE Constraint prevents two records from having identical values in a particular column. In the
COMPANY table, for example, you might want to prevent two or more people from having identical age.

EXAMPLE:
For example, the following SQLite statement creates a new table called COMPANY and adds five columns. Here,
AGE column is set to UNIQUE, so that you can not have two records with same age:

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL UNIQUE,

 ADDRESS CHAR(50),

 SALARY REAL DEFAULT 50000.00

);

PRIMARY KEY Constraint
The PRIMARY KEY constraint uniquely identifies each record in a database table. There can be more UNIQUE
columns, but only one primary key in a table. Primary keys are important when designing the database tables.
Primary keys are unique ids.

We use them to refer to table rows. Primary keys become foreign keys in other tables, when creating relations
among tables. Due to a 'longstanding coding oversight', primary keys can be NULL in SQLite. This is not the case
with other databases.

A primary key is a field in a table which uniquely identifies the each rows/records in a database table. Primary
keys must contain unique values. A primary key column cannot have NULL values.

A table can have only one primary key which may consist of single or multiple fields. When multiple fields are
used as a primary key, they are called a composite key.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

EXAMPLE:
You already have seen various examples above where we have created COMAPNY table with ID as primary key:

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

CHECK Constraint
The CHECK Constraint enables a condition to check the value being entered into a record. If the condition
evaluates to false, the record violates the constraint and isn't entered into the table.

EXAMPLE:

For example, the following SQLite creates a new table called COMPANY and adds five columns. Here, we add a
CHECK with SALARY column, so that you can not have any SALARY Zero:

CREATE TABLE COMPANY3(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL CHECK(SALARY > 0)

);

Dropping Constraints:
SQLite supports a limited subset of ALTER TABLE. The ALTER TABLE command in SQLite allows the user to
rename a table or to add a new column to an existing table. It is not possible to rename a column, remove a
column, or add or remove constraints from a table.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Joins

The SQLite Joins clause is used to combine records from two or more tables in a database. A JOIN is a

means for combining fields from two tables by using values common to each.

SQL defines three major types of joins:

 The CROSS JOIN

 The INNER JOIN

 The OUTER JOIN

Before we proceed, let's consider two tables COMPANY and DEPARTMENT. We already have seen INSERT
statements to populate COMPANY table. So just let's assume the list of records available in COMPANY table:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Another table is DEPARTMENT has the following definition:

CREATE TABLE DEPARTMENT(

 ID INT PRIMARY KEY NOT NULL,

 DEPT CHAR(50) NOT NULL,

 EMP_ID INT NOT NULL

);

Here is the list of INSERT statements to populate DEPARTMENT table:

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)

VALUES (1, 'IT Billing', 1);

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)

VALUES (2, 'Engineering', 2);

CHAPTER

28

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)

VALUES (3, 'Finance', 7);

Finally, we have the following list of records available in DEPARTMENT table:

ID DEPT EMP_ID

---------- ---------- ----------

1 IT Billing 1

2 Engineerin 2

3 Finance 7

The CROSS JOIN
A CROSS JOIN matches every row of the first table with every row of the second table. If the input tables have x
and y columns, respectively, the resulting table will have x+y columns. Because CROSS JOINs have the potential
to generate extremely large tables, care must be taken to only use them when appropriate.

Following is the syntax of CROSS JOIN:

SELECT ... FROM table1 CROSS JOIN table2 ...

Based on the above tables, we can write a cross join as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY CROSS JOIN DEPARTMENT;

Above query will produce the following result:

EMP_ID NAME DEPT

---------- ---------- ----------

1 Paul IT Billing

2 Paul Engineerin

7 Paul Finance

1 Allen IT Billing

2 Allen Engineerin

7 Allen Finance

1 Teddy IT Billing

2 Teddy Engineerin

7 Teddy Finance

1 Mark IT Billing

2 Mark Engineerin

7 Mark Finance

1 David IT Billing

2 David Engineerin

7 David Finance

1 Kim IT Billing

2 Kim Engineerin

7 Kim Finance

1 James IT Billing

2 James Engineerin

7 James Finance

The INNER JOIN
A INNER JOIN creates a new result table by combining column values of two tables (table1 and table2) based
upon the join-predicate. The query compares each row of table1 with each row of table2 to find all pairs of rows,
which satisfy the join-predicate. When the join-predicate is satisfied, column values for each matched pair of rows
of A and B are combined into a result row.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

An INNER JOIN is the most common type of join and is the default type of join. You can use INNER keyword
optionally.

Following is the syntax of INNER JOIN:

SELECT ... FROM table1 [INNER] JOIN table2 ON conditional_expression ...

To avoid redundancy and keep the phrasing shorter, INNER JOIN conditions can be declared with a
USING expression. This expression specifies a list of one or more columns:

SELECT ... FROM table1 JOIN table2 USING (column1 ,...) ...

A NATURAL JOIN is similar to a JOIN...USING, only it automatically tests for equality between the values of

every column that exists in both tables:

SELECT ... FROM table1 NATURAL JOIN table2...

Based on the above tables, we can write a INNER JOIN as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

Above query will produce the following result:

EMP_ID NAME DEPT

---------- ---------- ----------

1 Paul IT Billing

2 Allen Engineerin

7 James Finance

The OUTER JOIN
The OUTER JOIN is an extension of the INNER JOIN. Though SQL standard defines three types of OUTER
JOINs: LEFT, RIGHT and FULL but SQLite only supports the LEFT OUTER JOIN.

The OUTER JOINs have a condition that is identical to INNER JOINs, expressed using an ON, USING or
NATURAL keyword. The initial results table is calculated the same way. Once the primary JOIN is calculated, an
OUTER join will take any unjoined rows from one or both tables, pad them out with NULLs, and append them to
the resulting table.

Following is the syntax of LEFT OUTER JOIN:

SELECT ... FROM table1 LEFT OUTER JOIN table2 ON conditional_expression ...

To avoid redundancy and keep the phrasing shorter, OUTER JOIN conditions can be declared with a USING
expression. This expression specifies a list of one or more columns:

SELECT ... FROM table1 LEFT OUTER JOIN table2 USING (column1 ,...) ...

Based on the above tables, we can write a inner join as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

Above query will produce the following result:

EMP_ID NAME DEPT

---------- ---------- ----------

1 Paul IT Billing

2 Allen Engineerin

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 Teddy

 Mark

 David

 Kim

7 James Finance

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite UNIONS Clause

The SQLite UNION clause/operator is used to combine the results of two or more SELECT statements

without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same number of column
expressions, the same data type, and have them in the same order, but they do not have to be the same length.

Syntax:
The basic syntax of UNION is as follows:

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:
The tables COMPANY and DEPARTMENT are shown here:

COMPANY TABLE
This is the file to create COMPANY table and to populate it with 7 records.

-- Just copy and past them on sqlite> prompt.

DROP TABLE COMPANY;

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

CHAPTER

29

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Kim', 22, 'South-Hall', 45000.00);

INSERT INTO COMPANY VALUES (7, 'James', 24, 'Houston', 10000.00);

DEPARTMENT TABLE
-- This is the file to create DEPARTMENT table and to populate it with 7 records.

-- Just copy and past them on sqlite> prompt.

DROP TABLE DEPARTMENT;

CREATE TABLE DEPARTMENT(

 ID INT PRIMARY KEY NOT NULL,

 DEPT CHAR(50) NOT NULL,

 EMP_ID INT NOT NULL

);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (1, 'IT Billing', 1);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (2, 'Engineering', 2);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (3, 'Finance',7);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (4, 'Engineering',3);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (5, 'Finance', 4);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (6, 'Engineering', 5);

INSERT INTO DEPARTMENT(ID,DEPT,EMP_ID)

VALUES (7, 'Finance', 6);

Consider following two tables, (a) COMPANY table is as follows:

sqlite> select * from COMPANY;

ID NAME AGE ADDRESS SALARY

---------- -------------------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

(b) Another table is DEPARTMENT as follows:

ID DEPT EMP_ID

---------- -------------------- ----------

1 IT Billing 1

2 Engineering 2

3 Finance 7

4 Engineering 3

5 Finance 4

6 Engineering 5

7 Finance 6

Now, let us join these two tables using SELECT statement along with UNION clause as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID

 UNION

 SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

This would produce the following result:

EMP_ID NAME DEPT

---------- -------------------- ----------

1 Paul IT Billing

2 Allen Engineerin

3 Teddy Engineerin

4 Mark Finance

5 David Engineerin

6 Kim Finance

7 James Finance

The UNION ALL Clause:
The UNION ALL operator is used to combine the results of two SELECT statements including duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator as well.

Syntax:
The basic syntax of UNION ALL is as follows:

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION ALL

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here given condition could be any given expression based on your requirement.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example:
Now, let us join above-mentioned two tables in our SELECT statement as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID

 UNION ALL

 SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

This would produce the following result:

EMP_ID NAME DEPT

---------- -------------------- ----------

1 Paul IT Billing

2 Allen Engineerin

3 Teddy Engineerin

4 Mark Finance

5 David Engineerin

6 Kim Finance

7 James Finance

1 Paul IT Billing

2 Allen Engineerin

3 Teddy Engineerin

4 Mark Finance

5 David Engineerin

6 Kim Finance

7 James Finance

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite NULL Values

The SQLite NULL is the term used to represent a missing value. A NULL value in a table is a value in a

field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL value is different
than a zero value or a field that contains spaces.

Syntax:
The basic syntax of using NULL while creating a table:

SQLite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Here, NOT NULL signifies that column should always accept an explicit value of the given data type. There are

two columns where we did not use NOT NULL which means these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

Example:
The NULL value can cause problems when selecting data, however, because when comparing an unknown value
to any other value, the result is always unknown and not included in the final results. Consider the following
table, COMPANY having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Let us use UPDATE statement to set few nullable values as NULL as follows:

CHAPTER

30

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

sqlite> UPDATE COMPANY SET ADDRESS = NULL, SALARY = NULL where ID IN(6,7);

Now, COMPANY table should have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22

7 James 24

Next, let us see the usage of IS NOT NULL operator to list down all the records where SALARY is not NULL:

sqlite> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM COMPANY

 WHERE SALARY IS NOT NULL;

Above SQLite statement will produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following is the usage of IS NULL operator, which will list down all the records where SALARY is NULL:

sqlite> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM COMPANY

 WHERE SALARY IS NULL;

Above SQLite statement will produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22

7 James 24

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite ALIAS Syntax

You can rename a table or a column temporarily by giving another name, which is known as ALIAS. The

use of table aliases means to rename a table in a particular SQLite statement. Renaming is a temporary change
and the actual table name does not change in the database.

The column aliases are used to rename a table's columns for the purpose of a particular SQLite query.

Syntax:
The basic syntax of table alias is as follows:

SELECT column1, column2....

FROM table_name AS alias_name

WHERE [condition];

The basic syntax of column alias is as follows:

SELECT column_name AS alias_name

FROM table_name

WHERE [condition];

Example:
Consider the following two tables, (a) COMPANY table is as follows:

sqlite> select * from COMPANY;

ID NAME AGE ADDRESS SALARY

---------- -------------------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

(b) Another table is DEPARTMENT as follows:

ID DEPT EMP_ID

---------- -------------------- ----------

CHAPTER

31

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql
http://www.tutorialspoint.com/sqlite/department.sql

TUTORIALS POINT

Simply Easy Learning

1 IT Billing 1

2 Engineering 2

3 Finance 7

4 Engineering 3

5 Finance 4

6 Engineering 5

7 Finance 6

Now, following is the usage of TABLE ALIAS where we use C and D as aliases for COMPANY and

DEPARTMENT tables respectively:

sqlite> SELECT C.ID, C.NAME, C.AGE, D.DEPT

 FROM COMPANY AS C, DEPARTMENT AS D

 WHERE C.ID = D.EMP_ID;

Above SQLite statement will produce the following result:

ID NAME AGE DEPT

---------- ---------- ---------- ----------

1 Paul 32 IT Billing

2 Allen 25 Engineerin

3 Teddy 23 Engineerin

4 Mark 25 Finance

5 David 27 Engineerin

6 Kim 22 Finance

7 James 24 Finance

Let us see an example for the usage of COLUMN ALIAS where COMPANY_ID is an alias of ID column and

COMPANY_NAME is an alias of name column:

sqlite> SELECT C.ID AS COMPANY_ID, C.NAME AS COMPANY_NAME, C.AGE, D.DEPT

 FROM COMPANY AS C, DEPARTMENT AS D

 WHERE C.ID = D.EMP_ID;

Above SQLite statement will produce the following result:

COMPANY_ID COMPANY_NAME AGE DEPT

---------- ------------ ---------- ----------

1 Paul 32 IT Billing

2 Allen 25 Engineerin

3 Teddy 23 Engineerin

4 Mark 25 Finance

5 David 27 Engineerin

6 Kim 22 Finance

7 James 24 Finance

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Triggers

SQLite Triggers are database callback functions, which are automatically performed/invoked when a

specified database event occurs. Following are the important points about SQLite triggers:

 SQLite trigger may be specified to fire whenever a DELETE, INSERT or UPDATE of a particular database
table occurs or whenever an UPDATE occurs on on one or more specified columns of a table.

 At this time, SQLite supports only FOR EACH ROW triggers, not FOR EACH STATEMENT triggers. Hence,
explicitly specifying FOR EACH ROW is optional.

 Both the WHEN clause and the trigger actions may access elements of the row being inserted, deleted or
updated using references of the form NEW.column-name and OLD.column-name, where column-name is

the name of a column from the table that the trigger is associated with.

 If a WHEN clause is supplied, the SQL statements specified are only executed for rows for which the WHEN
clause is true. If no WHEN clause is supplied, the SQL statements are executed for all rows.

 The BEFORE or AFTER keyword determines when the trigger actions will be executed relative to the
insertion, modification or removal of the associated row.

 Triggers are automatically dropped when the table that they are associated with is dropped.

 The table to be modified must exist in the same database as the table or view to which the trigger is attached
and one must use just tablename not database.tablename.

 A special SQL function RAISE() may be used within a trigger-program to raise an exception.

Syntax:
The basic syntax of creating a trigger is as follows:

CREATE TRIGGER trigger_name [BEFORE|AFTER] event_name

ON table_name

BEGIN

 -- Trigger logic goes here....

END;

Here, event_name could be INSERT, DELETE, and UPDATE database operation on the mentioned
table table_name. You can optionally specify FOR EACH ROW after table name.

CHAPTER

32

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Following is the syntax of creating a trigger on an UPDATE operation on one or more specified columns of a table
as follows:

CREATE TRIGGER trigger_name [BEFORE|AFTER] UPDATE OF column_name

ON table_name

BEGIN

 -- Trigger logic goes here....

END;

Example
Let us consider a case where we want to keep audit trial for every record being inserted in COMPANY table,
which we create newly as follows (Drop COMPANY table if you already have it):

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

To keep audit trial, we will create a new table called AUDIT where log messages will be inserted whenever there
is an entry in COMPANY table for a new record:

sqlite> CREATE TABLE AUDIT(

 EMP_ID INT NOT NULL,

 ENTRY_DATE TEXT NOT NULL

);

Here, ID is the AUDIT record ID, and EMP_ID is the ID which will come from COMPANY table and DATE will
keep timestamp when the record will be created in COMPANY table. So now let's create a trigger on COMPANY
table as follows:

sqlite> CREATE TRIGGER audit_log AFTER INSERT

ON COMPANY

BEGIN

 INSERT INTO AUDIT(EMP_ID, ENTRY_DATE) VALUES (new.ID, datetime('now'));

END;

Now, we will start actual work, let's start inserting record in COMPANY table which should result in creating an
audit log record in AUDIT table. So let's create one record in COMPANY table as follows:

sqlite> INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Paul', 32, 'California', 20000.00);

This will create one record in COMPANY table, which is as follows:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

Same time, one record will be create in AUDIT table. This record is the result of a trigger, which we have created
on INSERT operation on COMPANY table. Similar way, you can create your triggers on UPDATE and DELETE
operations based on your requirements.

EMP_ID ENTRY_DATE

---------- -------------------

1 2013-04-05 06:26:00

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Listing TRIGGERS
You can list down all the triggers from sqlite_master table as follows:

sqlite> SELECT name FROM sqlite_master

WHERE type = 'trigger';

Above SQLite statement will list down only one entry as follows:

name

audit_log

If you want to list down triggers on a particular table, then use AND clause with table name as follows:

sqlite> SELECT name FROM sqlite_master

WHERE type = 'trigger' AND tbl_name = 'COMPANY';

Above SQLite statement will also list down only one entry as follows:

name

audit_log

Dropping TRIGGERS
Following is the DROP command, which can be used to drop an existing trigger:

sqlite> DROP TRIGGER trigger_name;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Indexes

Indexes are special lookup tables that the database search engine can use to speed up data retrieval. Simply

put, an index is a pointer to data in a table. An index in a database is very similar to an index in the back of a
book.

For example, if you want to reference all pages in a book that discuss a certain topic, you first refer to the index,
which lists all topics alphabetically and are then referred to one or more specific page numbers.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input, with UPDATE and
INSERT statements. Indexes can be created or dropped with no effect on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the index, to specify the
table and which column or columns to index, and to indicate whether the index is in ascending or descending
order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents duplicate entries in the
column or combination of columns on which there's an index.

The CREATE INDEX Command:
The basic syntax of CREATE INDEX is as follows:

CREATE INDEX index_name ON table_name;

Single-Column Indexes:
A single-column index is one that is created based on only one table column. The basic syntax is as follows:

CREATE INDEX index_name

ON table_name (column_name);

Unique Indexes:
Unique indexes are used not only for performance, but also for data integrity. A unique index does not allow any
duplicate values to be inserted into the table. The basic syntax is as follows:

CREATE INDEX index_name

CHAPTER

33

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

on table_name (column_name);

Composite Indexes:
A composite index is an index on two or more columns of a table. The basic syntax is as follows:

CREATE INDEX index_name

on table_name (column1, column2);

Whether to create a single-column index or a composite index, take into consideration the column(s) that you may
use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should there be two or more
columns that are frequently used in the WHERE clause as filters, the composite index would be the best choice.

Implicit Indexes:
Implicit indexes are indexes that are automatically created by the database server when an object is created.
Indexes are automatically created for primary key constraints and unique constraints.

Example
Following is an example where we will create an index on COMPANY table for salary column:

sqlite> CREATE INDEX salary_index ON COMPANY (salary);

Now, let's list down all the indices available on COMPANY table using .indices command as follows:

sqlite> .indices COMPANY

This will produce the following result, where sqlite_autoindex_COMPANY_1 is an implicit index, which got created

when table itself was created.

salary_index

sqlite_autoindex_COMPANY_1

You can list down all the indexes database wide as follows:

sqlite> SELECT * FROM sqlite_master WHERE type = 'index';

The DROP INDEX Command:
An index can be dropped using SQLite DROP command. Care should be taken when dropping an index because

performance may be slowed or improved.

The basic syntax is as follows:

DROP INDEX index_name;

You can use following statement to delete previously created index:

sqlite> DROP INDEX salary_index;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

When should indexes be avoided?
Although indexes are intended to enhance a database's performance, there are times when they should be
avoided. The following guidelines indicate when the use of an index should be reconsidered:

 Indexes should not be used on small tables.

 Tables that have frequent, large batch update or insert operations.

 Indexes should not be used on columns that contain a high number of NULL values.

 Columns that are frequently manipulated should not be indexed.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Indexed By

The "INDEXED BY index-name" clause specifies that the named index must be used in order to look up

values on the preceding table.

If index-name does not exist or cannot be used for the query, then the preparation of the SQLite statement fails.

The "NOT INDEXED" clause specifies that no index shall be used when accessing the preceding table, including
implied indices create by UNIQUE and PRIMARY KEY constraints.

However, the INTEGER PRIMARY KEY can still be used to look up entries even when "NOT INDEXED" is
specified.

Syntax
Following is the syntax for INDEXED BY clause and it can be used with DELETE, UPDATE or SELECT statement:

SELECT|DELETE|UPDATE column1, column2...

INDEXED BY (index_name)

table_name

WHERE (CONDITION);

Example
COMPANY Table:

-- This is the file to create COMPANY table and to populate it with 7 records.

-- Just copy and past them on sqlite> prompt.

DROP TABLE COMPANY;

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Allen', 25, 'Texas', 15000.00);

CHAPTER

34

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Kim', 22, 'South-Hall', 45000.00);

INSERT INTO COMPANY VALUES (7, 'James', 24, 'Houston', 10000.00);

Consider above table COMPANY we will create an index and use it for performing INDEXED BY operation.

sqlite> CREATE INDEX salary_index ON COMPANY(salary);

sqlite>

Now selecting the data from table COMPANY you can use INDEXED BY clause as follows:

sqlite> SELECT * FROM COMPANY INDEXED BY salary_index WHERE salary > 5000;

Kindly note that though SQLite specification talks about the above-mentioned Syntax forINDEXED BY clause but I

tried all the way to make INDEXED BY work on my installation but it did not work. If you found a solution kindly
share it at webmaster@tutorialspoint.com.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

SQLite Alter Command

The SQLite ALTER TABLE command modifies an existing table without performing a full dump and

reload of the data. You can rename a table using ALTER TABLE statement and additional columns can be added
in an existing table using ALTER TABLE statement.

There is no other operation supported by ALTER TABLE command in SQLite except renaming a table and adding
a column in existing table.

Syntax:
The basic syntax of ALTER TABLE to RENAME an existing table is as follows:

ALTER TABLE database_name.table_name RENAME TO new_table_name;

The basic syntax of ALTER TABLE to add a new column in an existing table is as follows:

ALTER TABLE database_name.table_name ADD COLUMN column_def...;

Example:
Consider our COMPANY table has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let's try to rename this table using ALTER TABLE statement as follows:

sqlite> ALTER TABLE COMPANY RENAME TO OLD_COMPANY;

CHAPTER

35

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

Above SQLite statement will rename COMPANY table to OLD_COMPANY. Now, let's try to add a new column in
OLD_COMPANY table as follows:

sqlite> ALTER TABLE OLD_COMPANY ADD COLUMN SEX char(1);

Now, COMPANY table is changed and following would be output from SELECT statement:

ID NAME AGE ADDRESS SALARY SEX

---------- ---------- ---------- ---------- ---------- ---

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

It should be noted that newly added column is filled with NULL values.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Truncate Table

Unfortunately, we do not have TRUNCATE TABLE command in SQLite but you can use

SQLite DELETE command to delete complete data from an existing table, though it is recommended to use

DROP TABLE command to drop complete table and re-create it once again.

Syntax:
The basic syntax of DELETE command is as follows:

sqlite> DELETE FROM table_name;

The basic syntax of DROP TABLE is as follows:

sqlite> DROP TABLE table_name;

If you are using DELETE TABLE command to delete all the records, it is recommended to
useVACUUM command to clear unused space.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is the example to truncate the above table:

SQLite> DELETE FROM COMPANY;

SQLite> VACUUM;

Now, COMPANY table is truncated completely and nothing would be output from SELECT statement:

CHAPTER

36

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

SQLite Views

Aview is nothing more than a SQLite statement that is stored in the database with an associated name.

A view is actually a composition of a table in the form of a predefined SQLite query.

A view can contain all rows of a table or selected rows from one or more tables. A view can be created from one
or many tables which depends on the written SQLite query to create a view.

Views which are kind of virtual tables, allow users to do the following:

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data such that a user can only see limited data instead of complete table.

 Summarize data from various tables which can be used to generate reports.

SQLite views are read-only and so you may not execute a DELETE, INSERT or UPDATE statement on a view.
But you can create a trigger on a view that fires on an attempt to DELETE, INSERT or UPDATE a view and do
what you need in the body of the trigger.

Creating Views:
The SQLite views are created using the CREATE VIEW statement. The SQLIte views can be created from a

single table, multiple tables, or another view.

The basic CREATE VIEW syntax is as follows:

CREATE [TEMP | TEMPORARY] VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

You can include multiple tables in your SELECT statement in very similar way as you use them in normal SQL
SELECT query. If the optional TEMP or TEMPORARY keyword is present, the view will be created in the temp
database.

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

CHAPTER

37

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, following is an example to create a view from COMPANY table. This view would be used to have only few
columns from COMPANY table:

sqlite> CREATE VIEW COMPANY_VIEW AS

SELECT ID, NAME, AGE

FROM COMPANY;

Now, you can query COMPANY_VIEW in similar way as you query an actual table. Following is the example:

sqlite> SELECT * FROM COMPANY_VIEW;

This would produce the following result:

ID NAME AGE

---------- ---------- ----------

1 Paul 32

2 Allen 25

3 Teddy 23

4 Mark 25

5 David 27

6 Kim 22

7 James 24

Dropping Views:
To drop a view, simply use the DROP VIEW statement with the view_name. The basic DROP VIEW syntax is as

follows:

sqlite> DROP VIEW view_name;

Following command will delete COMPANY_VIEW view, which we created in the last section:

sqlite> DROP VIEW COMPANY_VIEW;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite TRANSACTIONS

A transaction is a unit of work that is performed against a database. Transactions are units or sequences

of work accomplished in a logical order, whether in a manual fashion by a user or automatically by some sort of a
database program.

A transaction is the propagation of one or more changes to the database. For example, if you are creating a
record or updating a record or deleting a record from the table. then you are performing transaction on the table. It
is important to control transactions to ensure data integrity and to handle database errors.

Practically, you will club many SQLite queries into a group and you will execute all of them together as part of a
transaction.

Properties of Transactions:
Transactions have the following four standard properties, usually referred to by the acronym ACID:

 Atomicity: ensures that all operations within the work unit are completed successfully; otherwise, the

transaction is aborted at the point of failure and previous operations are rolled back to their former state.

 Consistency: ensures that the database properly changes states upon a successfully committed transaction.

 Isolation: enables transactions to operate independently of and transparent to each other.

 Durability: ensures that the result or effect of a committed transaction persists in case of a system failure.

Transaction Control:
There are the following commands used to control transactions:

 BEGIN TRANSACTION: to start a transaction.

 COMMIT: to save the changes, alternatively you can use END TRANSACTION command.

 ROLLBACK: to rollback the changes.

Transactional control commands are only used with the DML commands INSERT, UPDATE and DELETE. They
can not be used while creating tables or dropping them because these operations are automatically committed in
the database.

CHAPTER

38

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The BEGIN TRANSACTION Command:
Transactions can be started using BEGIN TRANSACTION or simply BEGIN command. Such transactions usually
persist until the next COMMIT or ROLLBACK command encountered. But a transaction will also ROLLBACK if
the database is closed or if an error occurs. Following is the simple syntax to start a transaction:

BEGIN;

or

BEGIN TRANSACTION;

The COMMIT Command:
The COMMIT command is the transactional command used to save changes invoked by a transaction to the
database.

The COMMIT command saves all transactions to the database since the last COMMIT or ROLLBACK command.

The syntax for COMMIT command is as follows:

COMMIT;

or

END TRANSACTION;

The ROLLBACK Command:
The ROLLBACK command is the transactional command used to undo transactions that have not already been
saved to the database.

The ROLLBACK command can only be used to undo transactions since the last COMMIT or ROLLBACK
command was issued.

The syntax for ROLLBACK command is as follows:

ROLLBACK;

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let's start a transaction and delete records from the table having age = 25 and finally we use ROLLBACK
command to undo all the changes.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

sqlite> BEGIN;

sqlite> DELETE FROM COMPANY WHERE AGE = 25;

sqlite> ROLLBACK;

If you will check, COMPANY table is still having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let's start another transaction and delete records from the table having age = 25 and finally we use COMMIT
command to commit all the changes.

sqlite> BEGIN;

sqlite> DELETE FROM COMPANY WHERE AGE = 25;

sqlite> COMMIT;

If you will check, COMPANY table is still having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Sub Queries

ASubquery or Inner query or Nested query is a query within another SQLite query and embedded within

the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to further restrict the data to
be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE and DELETE statements along with the operators
like =, <, >, >=, <=, IN, BETWEEN etc.

There are a few rules that subqueries must follow:

 Subqueries must be enclosed within parentheses.

 A subquery can have only one column in the SELECT clause, unless multiple columns are in the main query
for the subquery to compare its selected columns.

 An ORDER BY cannot be used in a subquery, although the main query can use an ORDER BY. The GROUP
BY can be used to perform the same function as the ORDER BY in a subquery.

 Subqueries that return more than one row can only be used with multiple value operators, such as the IN
operator.

 The BETWEEN operator cannot be used with a subquery; however, the BETWEEN can be used within the
subquery.

Subqueries with the SELECT Statement:
Subqueries are most frequently used with the SELECT statement. The basic syntax is as follows:

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

 (SELECT column_name [, column_name]

 FROM table1 [, table2]

 [WHERE])

CHAPTER

39

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example:
Consider COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let us check following sub-query with SELECT statement:

sqlite> SELECT *

 FROM COMPANY

 WHERE ID IN (SELECT ID

 FROM COMPANY

 WHERE SALARY > 45000) ;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Subqueries with the INSERT Statement:
Subqueries also can be used with INSERT statements. The INSERT statement uses the data returned from the
subquery to insert into another table. The selected data in the subquery can be modified with any of the
character, date or number functions.

The basic syntax is as follows:

INSERT INTO table_name [(column1 [, column2])]

 SELECT [*|column1 [, column2]

 FROM table1 [, table2]

 [WHERE VALUE OPERATOR]

Example:

Consider a table COMPANY_BKP with similar structure as COMPANY table and can be created using same
CREATE TABLE using COMPANY_BKP as table name. Now to copy complete COMPANY table into
COMPANY_BKP, following is the syntax:

sqlite> INSERT INTO COMPANY_BKP

 SELECT * FROM COMPANY

 WHERE ID IN (SELECT ID

 FROM COMPANY) ;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sqlite/company.sql

TUTORIALS POINT

Simply Easy Learning

Subqueries with the UPDATE Statement:
The subquery can be used in conjunction with the UPDATE statement. Either single or multiple columns in a table
can be updated when using a subquery with the UPDATE statement.

The basic syntax is as follows:

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example:

Assuming, we have COMPANY_BKP table available which is backup of COMPANY table.

Following example updates SALARY by 0.50 times in COMPANY table for all the customers, whose AGE is
greater than or equal to 27:

sqlite> UPDATE COMPANY

 SET SALARY = SALARY * 0.50

 WHERE AGE IN (SELECT AGE FROM COMPANY_BKP

 WHERE AGE >= 27);

This would impact two rows and finally COMPANY table would have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 10000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 42500.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Subqueries with the DELETE Statement:
The subquery can be used in conjunction with the DELETE statement like with any other statements mentioned
above.

The basic syntax is as follows:

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example:

Assuming, we have COMPANY_BKP table available which is backup of COMPANY table.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Following example deletes records from COMPANY table for all the customers whose AGE is greater than or
equal to 27:

sqlite> DELETE FROM COMPANY

 WHERE AGE IN (SELECT AGE FROM COMPANY_BKP

 WHERE AGE > 27);

This would impact two rows and finally COMPANY table would have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 42500.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite AUTOINCREMENT

SQLite AUTOINCREMENT is a keyword used for auto incrementing a value of a field in the table. We can

auto increment a field value by using AUTOINCREMENT keyword when creating a table with specific column

name to auto incrementing it.
The keyword AUTOINCREMENT can be used with INTEGER field only.

Syntax:
The basic usage of AUTOINCREMENT keyword is as follows:

CREATE TABLE table_name(

 column1 INTEGER AUTOINCREMENT,

 column2 datatype,

 column3 datatype,

 columnN datatype,

);

Example:
Consider COMPANY table to be created as follows:

sqlite> CREATE TABLE COMPANY(

 ID INTEGER PRIMARY KEY AUTOINCREMENT,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Now, insert following records into table COMPANY:

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Teddy', 23, 'Norway', 20000.00);

CHAPTER

40

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Kim', 22, 'South-Hall', 45000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('James', 24, 'Houston', 10000.00);

This will insert 7 tuples into the table COMPANY and COMPANY will have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Injection

If you take user input through a webpage and insert it into a SQLite database, there's a chance that you have

left yourself wide open for a security issue known as SQL Injection. This lesson will teach you how to help prevent
this from happening and help you secure your scripts and SQLite statements.

Injection usually occurs when you ask a user for input, like their name, and instead of a name they give you a
SQLite statement that you will unknowingly run on your database.

Never trust user provided data, process this data only after validation; as a rule, this is done by pattern matching.
In the example below, the username is restricted to alphanumerical chars plus underscore and to a length
between 8 and 20 chars - modify these rules as needed.

if (preg_match("/^\w{8,20}$/", $_GET['username'], $matches)){

 $db = new SQLiteDatabase('filename');

 $result = @$db->query("SELECT * FROM users WHERE username=$matches[0]");

}else{

 echo "username not accepted";

}

To demonstrate the problem, consider this excerpt:

$name = "Qadir'; DELETE FROM users;";

@$db->query("SELECT * FROM users WHERE username='{$name}'");

The function call is supposed to retrieve a record from the users table where the name column matches the name
specified by the user. Under normal circumstances, $name would only contain alphanumeric characters and

perhaps spaces, such as the string ilia. But here, by appending an entirely new query to $name, the call to the
database turns into disaster: the injected DELETE query removes all records from users.

There are database's interfaces which do not permit query stacking or executing multiple queries in a single
function call. If you try to stack queries, the call fails but SQLite and PostgreSQL, happily perform stacked
queries, executing all of the queries provided in one string and creating a serious security problem.

Preventing SQL Injection:
You can handle all escape characters smartly in scripting languages like PERL and PHP. Programming language
PHP provides the function string sqlite_escape_string() to escape input characters that are special to SQLite.

if (get_magic_quotes_gpc())

{

 $name = sqlite_escape_string($name);

CHAPTER

41

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

}

$result = @$db->query("SELECT * FROM users WHERE username='{$name}'");

Although the encoding makes it safe to insert the data, it will render simple text comparisons and LIKEclauses in

your queries unusable for the columns that contain the binary data.

Keep a note that addslashes() should NOT be used to quote your strings for SQLite queries; it will lead to strange
results when retrieving your data.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Explain

An SQLite statement can be preceded by the keyword "EXPLAIN" or by the phrase "EXPLAIN QUERY

PLAN" used for describing the details of table.

Either modification causes the SQLite statement to behave as a query and to return information about how the
SQLite statement would have operated if the EXPLAIN keyword or phrase had been omitted.

 The output from EXPLAIN and EXPLAIN QUERY PLAN is intended for interactive analysis and
troubleshooting only.

 The details of the output format are subject to change from one release of SQLite to the next.

 Applications should not use EXPLAIN or EXPLAIN QUERY PLAN since their exact behavior is variable and
only partially documented.

Syntax:
Syntax for EXPLAIN is as follows:

EXPLAIN [SQLite Query]

Syntax for EXPLAIN QUERY PLAN is as follows:

EXPLAIN QUERY PLAN [SQLite Query]

Example:
This is the file to create COMPANY table and to populate it with 7 records.

-- Just copy and past them on sqlite> prompt.

DROP TABLE COMPANY;

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

CHAPTER

42

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

VALUES (1, 'Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Kim', 22, 'South-Hall', 45000.00);

INSERT INTO COMPANY VALUES (7, 'James', 24, 'Houston', 10000.00);

Consider above shown COMPANY table is having the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let us check following sub-query with SELECT statement:

sqlite> EXPLAIN SELECT * FROM COMPANY WHERE Salary >= 20000;

This would produce the following result:

addr opcode p1 p2 p3

---------- ---------- ---------- ---------- ----------

0 Goto 0 19

1 Integer 0 0

2 OpenRead 0 8

3 SetNumColu 0 5

4 Rewind 0 17

5 Column 0 4

6 RealAffini 0 0

7 Integer 20000 0

8 Lt 357 16 collseq(BI

9 Rowid 0 0

10 Column 0 1

11 Column 0 2

12 Column 0 3

13 Column 0 4

14 RealAffini 0 0

15 Callback 5 0

16 Next 0 5

17 Close 0 0

18 Halt 0 0

19 Transactio 0 0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

20 VerifyCook 0 38

21 Goto 0 1

22 Noop 0 0

Now, let us check following Explain Query Plan with SELECT statement:

SQLite> EXPLAIN QUERY PLAN SELECT * FROM COMPANY WHERE Salary >= 20000;

order from detail

---------- ---------- -------------

0 0 TABLE COMPANY

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Vacuum

The VACUUM command cleans the main database by copying its contents to a temporary database file

and reloading the original database file from the copy. This eliminates free pages, aligns table data to be
contiguous, and otherwise cleans up the database file structure.

The VACUUM command may change the ROWID of entries in tables that do not have an explicit INTEGER
PRIMARY KEY. The VACUUM command only works on the main database. It is not possible to VACUUM an
attached database file.

The VACUUM command will fail if there is an active transaction. The VACUUM command is a no-op for in-
memory databases. As the VACUUM command rebuilds the database file from scratch, VACUUM can also be
used to modify many database-specific configuration parameters.

Manual VACUUM
Following is simple syntax to issue a VACUUM command for the whole database from command prompt:

$sqlite3 database_name "VACUUM;"

You can run VACUUM from SQLite prompt as well as follows:

sqlite> VACUUM;

You can also run VACUUM on a particular table as follows:

sqlite> VACUUM table_name;

Auto-VACCUM
SQLite Auto-VACUUM does not do the same as VACUUM rather it only moves free pages to the end of the
database thereby reducing the database size. By doing so it can significantly fragment the database while
VACUUM ensures defragmentation. So Auto-VACUUM just keeps the database small.

You can enable/disable SQLite auto-vacuuming by the following pragmas running at SQLite prompt:

sqlite> PRAGMA auto_vacuum = NONE; -- 0 means disable auto vacuum

sqlite> PRAGMA auto_vacuum = INCREMENTAL; -- 1 means enable incremental vacuum

sqlite> PRAGMA auto_vacuum = FULL; -- 2 means enable full auto vacuum

CHAPTER

43

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

You can run following command from command prompt to check the auto-vacuum setting:

$sqlite3 database_name "PRAGMA auto_vacuum;"

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Date & Time

SQLite supports five date and time functions as follows:

S.N. Function Example

1 date(timestring, modifiers...) This returns the date in this format: YYYY-MM-DD

2 time(timestring, modifiers...) This returns the time as HH:MM:SS

3
datetime(timestring,
modifiers...)

This returns YYYY-MM-DD HH:MM:SS

4
julianday(timestring,
modifiers...)

This returns the number of days since noon in Greenwich on November 24,
4714 B.C.

5
strftime(timestring,
modifiers...)

This returns the date formatted according to the format string specified as
the first argument formatted as per formatters explained below.

All the above five date and time functions take a time string as an argument. The time string is followed by zero or
more modifiers. The strftime() function also takes a format string as its first argument. Following section will give
you detail on different types of time strings and modifiers.

Time Strings:
A time string can be in any of the following formats:

S.N. Time String Example

1 YYYY-MM-DD 2010-12-30

2 YYYY-MM-DD HH:MM 2010-12-30 12:10

3 YYYY-MM-DD HH:MM:SS.SSS 2010-12-30 12:10:04.100

4 MM-DD-YYYY HH:MM 30-12-2010 12:10

5 HH:MM 12:10

6 YYYY-MM-DDTHH:MM 2010-12-30 12:10

7 HH:MM:SS 12:10:01

CHAPTER

44

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

8 YYYYMMDD HHMMSS 20101230 121001

9 Now 2013-05-07

You can use the "T" as a literal character separating the date and the time.

Modifiers
The time string can be followed by zero or more modifiers that will alter date and/or time returned by any of the
above five functions. Modifiers are applied from left to right and following modifers are available in SQLite:

 NNN days

 NNN hours

 NNN minutes

 NNN.NNNN seconds

 NNN months

 NNN years

 start of month

 start of year

 start of day

 weekday N

 unixepoch

 localtime

 utc

Formatters:
SQLite provides very handy function strftime() to format any date and time. You can use following substitutions to

format your date and time:

Substitution Description

%d Day of month, 01-31

%f Fractional seconds, SS.SSS

%H Hour, 00-23

%j Day of year, 001-366

%J Julian day number, DDDD.DDDD

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

%m Month, 00-12

%M Minute, 00-59

%s Seconds since 1970-01-01

%S Seconds, 00-59

%w Day of week, 0-6 (0 is Sunday)

%W Week of year, 01-53

%Y Year, YYYY

%% % symbol

Examples
Let's try various examples now using SQLite prompt. Following computes the current date:

sqlite> SELECT date('now');

2013-05-07

Following computes the last day of the current month:

sqlite> SELECT date('now','start of month','+1 month','-1 day');

2013-05-31

Following computes the date and time given a UNIX timestamp 1092941466:

sqlite> SELECT datetime(1092941466, 'unixepoch');

2004-08-19 18:51:06

Following computes the date and time given a UNIX timestamp 1092941466 and compensate for your local
timezone:

sqlite> SELECT datetime(1092941466, 'unixepoch', 'localtime');

2004-08-19 11:51:06

Following computes the current UNIX timestamp:

sqlite> SELECT datetime(1092941466, 'unixepoch', 'localtime');

1367926057

Following computes the number of days since the signing of the US Declaration of Independence:

sqlite> SELECT julianday('now') - julianday('1776-07-04');

86504.4775830326

Following computes the number of seconds since a particular moment in 2004:

sqlite> SELECT strftime('%s','now') - strftime('%s','2004-01-01 02:34:56');

295001572

Following computes the date of the first Tuesday in October for the current year:

sqlite> SELECT date('now','start of year','+9 months','weekday 2');

2013-10-01

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Following computes the time since the UNIX epoch in seconds (like strftime('%s','now') except includes fractional
part):

sqlite> SELECT (julianday('now') - 2440587.5)*86400.0;

1367926077.12598

To convert between UTC and local time values when formatting a date, use the utc or localtime modifiers as
follows:

sqlite> SELECT time('12:00', 'localtime');

05:00:00

sqlite> SELECT time('12:00', 'utc');

19:00:00

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Useful Functions

SQLite has many built-in functions for performing processing on string or numeric data. Following is the list

of few useful SQLite built-in functions and all are case insensitive, which means you can use these functions
either in lower-case form or in upper-case or in mixed form. For more details, you can check official
documentation for SQLite:

S.N. Function & Description

1
SQLite COUNT Function

The SQLite COUNT aggregate function is used to count the number of rows in a database table.

2

SQLite MAX Function

The SQLite MAX aggregate function allows us to select the highest (maximum) value for a certain
column.

3
SQLite MIN Function

The SQLite MIN aggregate function allows us to select the lowest (minimum) value for a certain column.

4
SQLite AVG Function

The SQLite AVG aggregate function selects the average value for certain table column.

5
SQLite SUM Function

The SQLite SUM aggregate function allows selecting the total for a numeric column.

6

SQLite RANDOM Function

The SQLite RANDOM function returns a pseudo-random integer between -9223372036854775808 and
+9223372036854775807.

7
SQLite ABS Function

The SQLite ABS function returns the absolute value of the numeric argument.

8
SQLite UPPER Function

The SQLite UPPER function converts a string into upper-case letters.

9
SQLite LOWER Function

The SQLite LOWER function converts a string into lower-case letters.

10
SQLite LENGTH Function

The SQLite LENGTH function returns the length of a string.

11
SQLite sqlite_version Function

The SQLite sqlite_version function returns the version of the SQLite library.

CHAPTER

45

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Before we start giving examples on the above mentioned functions, consider COMPANY table is having the
following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite COUNT Function
The SQLite COUNT aggregate function is used to count the number of rows in a database table. Following is the
example:

sqlite> SELECT count(*) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

count(*)

7

SQLite MAX Function
The SQLite MAX aggregate function allows us to select the highest (maximum) value for a certain column.
Following is the example:

sqlite> SELECT max(salary) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

max(salary)

85000.0

SQLite MIN Function
The SQLite MIN aggregate function allows us to select the lowest (minimum) value for a certain column.
Following is the example:

sqlite> SELECT min(salary) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

min(salary)

10000.0

SQLite AVG Function
The SQLite AVG aggregate function selects the average value for certain table column. Following is the example:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

sqlite> SELECT avg(salary) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

avg(salary)

37142.8571428572

SQLite SUM Function
The SQLite SUM aggregate function allows selecting the total for a numeric column. Following is the example:

sqlite> SELECT sum(salary) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

sum(salary)

260000.0

SQLite RANDOM Function
The SQLite RANDOM function returns a pseudo-random integer between -9223372036854775808 and
+9223372036854775807. Following is the example:

sqlite> SELECT random() AS Random;

Above SQLite SQL statement will produce the following result:

Random

5876796417670984050

SQLite ABS Function
The SQLite ABS function returns the absolute value of the numeric argument. Following is the example:

sqlite> SELECT abs(5), abs(-15), abs(NULL), abs(0), abs("ABC");

Above SQLite SQL statement will produce following result:

abs(5) abs(-15) abs(NULL) abs(0) abs("ABC")

---------- ---------- ---------- ---------- ----------

5 15 0 0.0

SQLite UPPER Function
The SQLite UPPER function converts a string into upper-case letters. Following is the example:

sqlite> SELECT upper(name) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

upper(name)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

PAUL

ALLEN

TEDDY

MARK

DAVID

KIM

JAMES

SQLite LOWER Function
The SQLite LOWER function converts a string into lower-case letters. Following is the example:

sqlite> SELECT lower(name) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

lower(name)

paul

allen

teddy

mark

david

kim

james

SQLite LENGTH Function
The SQLite LENGTH function returns the length of a string. Following is the example:

sqlite> SELECT name, length(name) FROM COMPANY;

Above SQLite SQL statement will produce the following result:

NAME length(name)

---------- ------------

Paul 4

Allen 5

Teddy 5

Mark 4

David 5

Kim 3

James 5

SQLite sqlite_version Function
The SQLite sqlite_version function returns the version of the SQLite library. Following is the example:

sqlite> SELECT sqlite_version() AS 'SQLite Version';

Above SQLite SQL statement will produce the following result:

SQLite Version

3.6.20

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite C/C++ Tutorial

Installation

Before we start using SQLite in our C/C++ programs, we need to make sure that we have SQLite library

set up on the machine. You can check SQLite Installation chapter to understand installation process.

C/C++ Interface APIs
Following are important SQLite routines, which can suffice your requirement to work with SQLite database from
your C/C++ program. If you are looking for a more sophisticated application, then you can look into SQLite official
documentation.

S.N. API & Description

1

sqlite3_open(const char *filename, sqlite3 **ppDb)

This routine opens a connection to an SQLite database file and returns a database connection object to
be used by other SQLite routines.

If the filename argument is NULL or ':memory:', sqlite3_open() will create an in-memory database in RAM
that lasts only for the duration of the session.

If filename is not NULL, sqlite3_open() attempts to open the database file by using its value. If no file by
that name exists, sqlite3_open() will open a new database file by that name.

2

sqlite3_exec(sqlite3*, const char *sql, sqlite_callback, void *data, char **errmsg)

This routine provides a quick, easy way to execute SQL commands provided by sql argument which can
consist of more than one SQL command.

Here, first argument sqlite3 is open database object, sqlite_callback is a call back for whichdata is the 1st
argument and errmsg will be return to capture any error raised by the routine.
The sqlite3_exec() routine parses and executes every command given in the sql argument until it

reaches the end of the string or encounters an error.

3
sqlite3_close(sqlite3*)

This routine closes a database connection previously opened by a call to sqlite3_open(). All prepared

CHAPTER

46

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

statements associated with the connection should be finalized prior to closing the connection.

If any queries remain that have not been finalized, sqlite3_close() will return SQLITE_BUSY with the
error message Unable to close due to unfinalized statements.

Connecting To Database
Following C code segment shows how to connect to an existing database. If database does not exist, then it will
be created and finally a database object will be returned.

#include <stdio.h>

#include <sqlite3.h>

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 exit(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 sqlite3_close(db);

}

Now, let's compile and run above program to create our database test.db in the current directory. You can

change your path as per your requirement.

$gcc test.c -l sqlite3

$./a.out

Opened database successfully

If you are going to use C++ source code, then you can compile your code as follows:

$g++ test.c -l sqlite3

Here, we are linking our program with sqlite3 library to provide required functions to C program. This will create a
database file test.db in your directory and you will have the result something as follows:

-rwxr-xr-x. 1 root root 7383 May 8 02:06 a.out

-rw-r--r--. 1 root root 323 May 8 02:05 test.c

-rw-r--r--. 1 root root 0 May 8 02:06 test.db

Create a Table
Following C code segment will be used to create a table in previously created database:

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *NotUsed, int argc, char **argv, char **azColName){

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 int i;

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 exit(0);

 }else{

 fprintf(stdout, "Opened database successfully\n");

 }

 /* Create SQL statement */

 sql = "CREATE TABLE COMPANY(" \

 "ID INT PRIMARY KEY NOT NULL," \

 "NAME TEXT NOT NULL," \

 "AGE INT NOT NULL," \

 "ADDRESS CHAR(50)," \

 "SALARY REAL);";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, 0, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Table created successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When above program is compiled and executed, it will create COMPANY table in your test.db and final listing of
the file will be as follows:

-rwxr-xr-x. 1 root root 9567 May 8 02:31 a.out

-rw-r--r--. 1 root root 1207 May 8 02:31 test.c

-rw-r--r--. 1 root root 3072 May 8 02:31 test.db

INSERT Operation
Following C code segment shows how we can create records in our COMPANY table created in above example:

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

static int callback(void *NotUsed, int argc, char **argv, char **azColName){

 int i;

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 exit(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create SQL statement */

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " \

 "VALUES (1, 'Paul', 32, 'California', 20000.00); " \

 "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " \

 "VALUES (2, 'Allen', 25, 'Texas', 15000.00); " \

 "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)" \

 "VALUES (3, 'Teddy', 23, 'Norway', 20000.00);" \

 "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)" \

 "VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, 0, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Records created successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When above program is compiled and executed, it will create given records in COMPANY table and will display
following two line:

Opened database successfully

Records created successfully

SELECT Operation
Before we proceed with actual example to fetch records, let me give a little detail about the callback function,
which we are using in our examples. This callback provides a way to obtain results from SELECT statements. It
has the following declaration:

typedef int (*sqlite3_callback)(

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

void*, /* Data provided in the 4th argument of sqlite3_exec() */

int, /* The number of columns in row */

char**, /* An array of strings representing fields in the row */

char** /* An array of strings representing column names */

);

If above callback is provided in sqlite_exec() routine as the third argument, SQLite will call the this callback
function for each record processed in each SELECT statement executed within the SQL argument.

Following C code segment shows how we can fetch and display records from our COMPANY table created in
above example:

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *data, int argc, char **argv, char **azColName){

 int i;

 fprintf(stderr, "%s: ", (const char*)data);

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 const char* data = "Callback function called";

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 exit(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create SQL statement */

 sql = "SELECT * from COMPANY";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, (void*)data, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Operation done successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When above program is compiled and executed, it will produce the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Opened database successfully

Callback function called: ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 20000.0

Callback function called: ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

Callback function called: ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

Callback function called: ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

UPDATE Operation
Following C code segment shows how we can use UPDATE statement to update any record and then fetch and
display updated records from our COMPANY table:

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *data, int argc, char **argv, char **azColName){

 int i;

 fprintf(stderr, "%s: ", (const char*)data);

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 const char* data = "Callback function called";

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 exit(0);

 }else{

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create merged SQL statement */

 sql = "UPDATE COMPANY set SALARY = 25000.00 where ID=1; " \

 "SELECT * from COMPANY";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, (void*)data, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Operation done successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When above program is compiled and executed, it will produce the following result:

Opened database successfully

Callback function called: ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 25000.0

Callback function called: ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

Callback function called: ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

Callback function called: ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

DELETE Operation
Following C code segment shows how we can use DELETE statement to delete any record and then fetch and
display remaining records from our COMPANY table:

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *data, int argc, char **argv, char **azColName){

 int i;

 fprintf(stderr, "%s: ", (const char*)data);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 const char* data = "Callback function called";

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 exit(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create merged SQL statement */

 sql = "DELETE from COMPANY where ID=2; " \

 "SELECT * from COMPANY";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, (void*)data, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Operation done successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When above program is compiled and executed, it will produce the following result:

Opened database successfully

Callback function called: ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 20000.0

Callback function called: ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

Callback function called: ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Operation done successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Java Tutorial

Installation

Before we start using SQLite in our Java programs, we need to make sure that we have SQLite JDBC

Driver and Java set up on the machine. You can check Java tutorial for Java installation on your machine. Now,
let us check how to set up SQLite JDBC driver.

 Download latest version of sqlite-jdbc-(VERSION).jar from sqlite-jdbc repository.

 Add downloaded jar file sqlite-jdbc-(VERSION).jar in your class path, or you can use it along with -classpath
option as explained below in examples.

Following section assumes you have little knowledge about Java JDBC concepts. If you don't, then it is suggested
to spent half an hour with JDBC Tutorial to become comfortable with concepts explained below.

Connecting To Database
Following Java programs shows how to connect to an existing database. If database does not exist, then it will be
created and finally a database object will be returned.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Opened database successfully");

 }

}

Now, let's compile and run above program to create our database test.db in the current directory. You can
change your path as per your requirement. We are assuming current version of JDBC driver sqlite-jdbc-3.7.2.jar is
available in the current path

CHAPTER

47

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
https://bitbucket.org/xerial/sqlite-jdbc/downloads
http://www.tutorialspoint.com/jdbc/jdbc-create-database.htm

TUTORIALS POINT

Simply Easy Learning

$javac SQLiteJDBC.java

$java -classpath ".:sqlite-jdbc-3.7.2.jar" SQLiteJDBC

Open database successfully

If you are going to use Windows machine, then you can compile and run your code as follows:

$javac SQLiteJDBC.java

$java -classpath ".;sqlite-jdbc-3.7.2.jar" SQLiteJDBC

Opened database successfully

Create a Table
Following Java program will be used to create a table in previously created database:

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "CREATE TABLE COMPANY " +

 "(ID INT PRIMARY KEY NOT NULL," +

 " NAME TEXT NOT NULL, " +

 " AGE INT NOT NULL, " +

 " ADDRESS CHAR(50), " +

 " SALARY REAL)";

 stmt.executeUpdate(sql);

 stmt.close();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Table created successfully");

 }

}

When above program is compiled and executed, it will create COMPANY table in your test.db and final listing of

the file will be as follows:

-rw-r--r--. 1 root root 3201128 Jan 22 19:04 sqlite-jdbc-3.7.2.jar

-rw-r--r--. 1 root root 1506 May 8 05:43 SQLiteJDBC.class

-rw-r--r--. 1 root root 832 May 8 05:42 SQLiteJDBC.java

-rw-r--r--. 1 root root 3072 May 8 05:43 test.db

INSERT Operation
Following Java program shows how we can create records in our COMPANY table created in above example:

import java.sql.*;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (1, 'Paul', 32, 'California', 20000.00);";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (2, 'Allen', 25, 'Texas', 15000.00);";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (3, 'Teddy', 23, 'Norway', 20000.00);";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);";

 stmt.executeUpdate(sql);

 stmt.close();

 c.commit();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Records created successfully");

 }

}

When above program is compiled and executed, it will create given records in COMPANY table and will display
following two line:

Opened database successfully

Records created successfully

SELECT Operation
Following Java program shows how we can fetch and display records from our COMPANY table created in above
example:

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT * FROM COMPANY;");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 int age = rs.getInt("age");

 String address = rs.getString("address");

 float salary = rs.getFloat("salary");

 System.out.println("ID = " + id);

 System.out.println("NAME = " + name);

 System.out.println("AGE = " + age);

 System.out.println("ADDRESS = " + address);

 System.out.println("SALARY = " + salary);

 System.out.println();

 }

 rs.close();

 stmt.close();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Operation done successfully");

 }

}

When above program is compiled and executed, it will produce the following result:

Opened database successfully

ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 20000.0

ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

UPDATE Operation
Following Java code shows how we can use UPDATE statement to update any record and then fetch and display
updated records from our COMPANY table:

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "UPDATE COMPANY set SALARY = 25000.00 where ID=1;";

 stmt.executeUpdate(sql);

 c.commit();

 ResultSet rs = stmt.executeQuery("SELECT * FROM COMPANY;");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 int age = rs.getInt("age");

 String address = rs.getString("address");

 float salary = rs.getFloat("salary");

 System.out.println("ID = " + id);

 System.out.println("NAME = " + name);

 System.out.println("AGE = " + age);

 System.out.println("ADDRESS = " + address);

 System.out.println("SALARY = " + salary);

 System.out.println();

 }

 rs.close();

 stmt.close();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Operation done successfully");

 }

}

When above program is compiled and executed, it will produce the following result:

Opened database successfully

ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 25000.0

ID = 2

NAME = Allen

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

DELETE Operation
Following Java code shows how we can use DELETE statement to delete any record and then fetch and display
remaining records from our COMPANY table:

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "DELETE from COMPANY where ID=2;";

 stmt.executeUpdate(sql);

 c.commit();

 ResultSet rs = stmt.executeQuery("SELECT * FROM COMPANY;");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 int age = rs.getInt("age");

 String address = rs.getString("address");

 float salary = rs.getFloat("salary");

 System.out.println("ID = " + id);

 System.out.println("NAME = " + name);

 System.out.println("AGE = " + age);

 System.out.println("ADDRESS = " + address);

 System.out.println("SALARY = " + salary);

 System.out.println();

 }

 rs.close();

 stmt.close();

 c.close();

 } catch (Exception e) {

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Operation done successfully");

 }

}

When above program is compiled and executed, it will produce the following result:

Opened database successfully

ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 25000.0

ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite PHP Tutorial

Installation

The SQLite3 extension is enabled by default as of PHP 5.3.0. It's possible to disable it by using --without-

sqlite3 at compile time.

Windows users must enable php_sqlite3.dll in order to use this extension. This DLL is included with Windows
distributions of PHP as of PHP 5.3.0.

For detailed installation instructions, kindly check our PHP tutorial and its official website.

PHP Interface APIs
Following are important PHP routines, which can suffice your requirement to work with SQLite database from your
PHP program. If you are looking for a more sophisticated application, then you can look into PHP official
documentation.

S.N. API & Description

1

public void SQLite3::open (filename, flags, encryption_key)

Opens an SQLite 3 Database. If the build includes encryption, then it will attempt to use the key.

If the filename is given as ':memory:', SQLite3::open() will create an in-memory database in RAM that

lasts only for the duration of the session.

If filename is actual device file name, SQLite3::open() attempts to open the database file by using its
value. If no file by that name exists then a new database file by that name gets created.

Optional flags used to determine how to open the SQLite database. By default, open uses
SQLITE3_OPEN_READWRITE | SQLITE3_OPEN_CREATE.

2

public bool SQLite3::exec (string $query)

This routine provides a quick, easy way to execute SQL commands provided by sql argument which can
consist of more than one SQL command. This routine is used to execute a result-less query against a
given database.

CHAPTER

48

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

3
public SQLite3Result SQLite3::query (string $query)
This routine executes an SQL query, returning an SQLite3Result object if the query returns results.

4

public int SQLite3::lastErrorCode (void)

This routine returns the numeric result code of the most recent failed SQLite request

5

public string SQLite3::lastErrorMsg (void)

This routine returns english text describing the most recent failed SQLite request.

6

public int SQLite3::changes (void)

This routine returns the number of database rows that were updated or inserted or deleted by the most
recent SQL statement

7

public bool SQLite3::close (void)

This routine closes a database connection previously opened by a call to SQLite3::open().

8

public string SQLite3::escapeString (string $value)

This routine returns a string that has been properly escaped for safe inclusion in an SQL statement.

Connecting To Database
Following PHP code shows how to connect to an existing database. If database does not exist, then it will be
created and finally a database object will be returned.

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

?>

Now, let's run above program to create our database test.db in the current directory. You can change your path

as per your requirement. If database is successfully created, then it will give the following message:

Open database successfully

Create a Table
Following PHP program will be used to create a table in previously created database:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 CREATE TABLE COMPANY

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);

EOF;

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo "Table created successfully\n";

 }

 $db->close();

?>

When above program is executed, it will create COMPANY table in your test.db and it will display the following

messages:

Opened database successfully

Table created successfully

INSERT Operation
Following PHP program shows how we can create records in our COMPANY table created in above example:

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (1, 'Paul', 32, 'California', 20000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (2, 'Allen', 25, 'Texas', 15000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

EOF;

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo "Records created successfully\n";

 }

 $db->close();

?>

When above program is executed, it will create given records in COMPANY table and will display the following
two lines:

Opened database successfully

Records created successfully

SELECT Operation
Following PHP program shows how we can fetch and display records from our COMPANY table created in above
example:

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 SELECT * from COMPANY;

EOF;

 $ret = $db->query($sql);

 while($row = $ret->fetchArray(SQLITE3_ASSOC)){

 echo "ID = ". $row['ID'] . "\n";

 echo "NAME = ". $row['NAME'] ."\n";

 echo "ADDRESS = ". $row['ADDRESS'] ."\n";

 echo "SALARY = ".$row['SALARY'] ."\n\n";

 }

 echo "Operation done successfully\n";

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 $db->close();

?>

When above program is executed, it will produce the following result:

Opened database successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

UPDATE Operation
Following PHP code shows how we can use UPDATE statement to update any record and then fetch and display
updated records from our COMPANY table:

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 UPDATE COMPANY set SALARY = 25000.00 where ID=1;

EOF;

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo $db->changes(), " Record updated successfully\n";

 }

 $sql =<<<EOF

 SELECT * from COMPANY;

EOF;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 $ret = $db->query($sql);

 while($row = $ret->fetchArray(SQLITE3_ASSOC)){

 echo "ID = ". $row['ID'] . "\n";

 echo "NAME = ". $row['NAME'] ."\n";

 echo "ADDRESS = ". $row['ADDRESS'] ."\n";

 echo "SALARY = ".$row['SALARY'] ."\n\n";

 }

 echo "Operation done successfully\n";

 $db->close();

?>

When above program is executed, it will produce the following result:

Opened database successfully

1 Record updated successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

DELETE Operation
Following PHP code shows how we can use DELETE statement to delete any record and then fetch and display
remaining records from our COMPANY table:

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 DELETE from COMPANY where ID=2;

EOF;

 $ret = $db->exec($sql);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo $db->changes(), " Record deleted successfully\n";

 }

 $sql =<<<EOF

 SELECT * from COMPANY;

EOF;

 $ret = $db->query($sql);

 while($row = $ret->fetchArray(SQLITE3_ASSOC)){

 echo "ID = ". $row['ID'] . "\n";

 echo "NAME = ". $row['NAME'] ."\n";

 echo "ADDRESS = ". $row['ADDRESS'] ."\n";

 echo "SALARY = ".$row['SALARY'] ."\n\n";

 }

 echo "Operation done successfully\n";

 $db->close();

?>

When above program is executed, it will produce the following result:

Opened database successfully

1 Record deleted successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Perl Tutorial

Installation

The SQLite3 can be integrated with Perl using Perl DBI module, which is a database access module for

the Perl programming language. It defines a set of methods, variables and conventions that provide a standard
database interface.

Here are simple steps to install DBI module on your Linux/UNIX machine:

$ wget http://search.cpan.org/CPAN/authors/id/T/TI/TIMB/DBI-1.625.tar.gz

$ tar xvfz DBI-1.625.tar.gz

$ cd DBI-1.625

$ perl Makefile.PL

$ make

$ make install

If you need to install SQLite driver for DBI, then it can be installed as follows:

$ wget http://search.cpan.org/CPAN/authors/id/M/MS/MSERGEANT/DBD-SQLite-1.11.tar.gz

$ tar xvfz DBD-SQLite-1.11.tar.gz

$ cd DBD-SQLite-1.11

$ perl Makefile.PL

$ make

$ make install

DBI Interface APIs
Following are important DBI routines, which can suffice your requirement to work with SQLite database from your
Perl program. If you are looking for a more sophisticated application, then you can look into Perl DBI official
documentation.

S.N. API & Description

1

DBI->connect($data_source, "", "", \%attr)

Establishes a database connection, or session, to the requested $data_source. Returns a
database handle object if the connection succeeds.

Datasource has the form like : DBI:SQLite:dbname='test.db' SQLite is SQLite driver name and

CHAPTER

49

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

test.db is the name of SQLite database file. If the filename is given as ':memory:', it will create

an in-memory database in RAM that lasts only for the duration of the session.

If filename is actual device file name, then it attempts to open the database file by using its value.
If no file by that name exists then a new database file by that name gets created.

You keep second and third paramter as blank strings and last parameter is to pass various
attributes as shown below in the example.

2

$dbh->do($sql)

This routine prepares and executes a single SQL statement. Returns the number of rows
affected or undef on error. A return value of -1 means the number of rows is not known, not
applicable, or not available. Here $dbh is a handle returned by DBI->connect() call.

3

$dbh->prepare($sql)

This routine prepares a statement for later execution by the database engine and returns a
reference to a statement handle object.

4

$sth->execute()

This routine performs whatever processing is necessary to execute the prepared statement. An
undef is returned if an error occurs. A successful execute always returns true regardless of the
number of rows affected. Here, $sth is a statement handle returned by $dbh->prepare($sql) call.

5

$sth->fetchrow_array()

This routine fetches the next row of data and returns it as a list containing the field values. Null
fields are returned as undef values in the list.

6

$DBI::err

This is equivalent to $h->err, where $h is any of the handle types like $dbh, $sth, or $drh. This
returns native database engine error code from the last driver method called.

7

$DBI::errstr

This is equivalent to $h->errstr, where $h is any of the handle types like $dbh, $sth, or $drh. This
returns the native database engine error message from the last DBI method called.

8

$dbh->disconnect()

This routine closes a database connection previously opened by a call to DBI->connect().

Connecting To Database
Following Perl code shows how to connect to an existing database. If database does not exist, then it will be
created and finally a database object will be returned.

#!/usr/bin/perl

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

Now, let's run above program to create our database test.db in the current directory. You can change your path

as per your requirement. Keep above code in sqlite.pl file and execute it as shown below. If database is
successfully created, then it will give the following message:

$ chmod +x sqlite.pl

$./sqlite.pl

Open database successfully

Create a Table
Following Perl program will be used to create a table in previously created database:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(CREATE TABLE COMPANY

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL););

my $rv = $dbh->do($stmt);

if($rv < 0){

 print $DBI::errstr;

} else {

 print "Table created successfully\n";

}

$dbh->disconnect();

When above program is executed, it will create COMPANY table in your test.db and it will display the following

messages:

Opened database successfully

Table created successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

NOTE: in case you see following error in any of the operation:

DBD::SQLite::st execute failed: not an error(21) at dbdimp.c line 398

In this case you will have open dbdimp.c file available in DBD-SQLite installation and find out
sqlite3_prepare() function and change its third argument to -1 instead of 0. Finally install DBD::SQLite
using make and do make install to resolve the problem.

INSERT Operation
Following Perl program shows how we can create records in our COMPANY table created in above example:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (1, 'Paul', 32, 'California', 20000.00));

my $rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (2, 'Allen', 25, 'Texas', 15000.00));

$rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00));

$rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00););

$rv = $dbh->do($stmt) or die $DBI::errstr;

print "Records created successfully\n";

$dbh->disconnect();

When above program is executed, it will create given records in COMPANY table and will display the following
two lines:

Opened database successfully

Records created successfully

SELECT Operation
Following Perl program shows how we can fetch and display records from our COMPANY table created in above
example:

#!/usr/bin/perl

use DBI;

use strict;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(SELECT id, name, address, salary from COMPANY;);

my $sth = $dbh->prepare($stmt);

my $rv = $sth->execute() or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

print "Operation done successfully\n";

$dbh->disconnect();

When above program is executed, it will produce the following result:

Opened database successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

UPDATE Operation
Following Perl code shows how we can use UPDATE statement to update any record and then fetch and display
updated records from our COMPANY table:

#!/usr/bin/perl

use DBI;

use strict;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(UPDATE COMPANY set SALARY = 25000.00 where ID=1;);

my $rv = $dbh->do($stmt) or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}else{

 print "Total number of rows updated : $rv\n";

}

$stmt = qq(SELECT id, name, address, salary from COMPANY;);

my $sth = $dbh->prepare($stmt);

$rv = $sth->execute() or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

print "Operation done successfully\n";

$dbh->disconnect();

When above program is executed, it will produce the following result:

Opened database successfully

Total number of rows updated : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

DELETE Operation
Following Perl code shows how we can use DELETE statement to delete any record and then fetch and display
remaining records from our COMPANY table:

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(DELETE from COMPANY where ID=2;);

my $rv = $dbh->do($stmt) or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}else{

 print "Total number of rows deleted : $rv\n";

}

$stmt = qq(SELECT id, name, address, salary from COMPANY;);

my $sth = $dbh->prepare($stmt);

$rv = $sth->execute() or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

print "Operation done successfully\n";

$dbh->disconnect();

When above program is executed, it will produce the following result:

Opened database successfully

Total number of rows deleted : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

SQLite Python

Installation

The SQLite3 can be integrated with Python using sqlite3 module, which was written by Gerhard Haring. It

provides an SQL interface compliant with the DB-API 2.0 specification described by PEP 249. You do not need to
install this module separately because its being shipped by default along with Python version 2.5.x onwards.

To use sqlite3 module, you must first create a connection object that represents the database and then optionally
you can create cursor object, which will help you in executing all the SQL statements.

Python sqlite3 module APIs
Following are important sqlite3 module routines, which can suffice your requirement to work with SQLite database
from your Perl program. If you are looking for a more sophisticated application, then you can look into Python
sqlite3 module's official documentation.

S.N. API & Description

1

sqlite3.connect(database [,timeout ,other optional arguments])

This API opens a connection to the SQLite database file database. You can use ":memory:" to open a
database connection to a database that resides in RAM instead of on disk. If database is opened
successfully, it returns a connection object.

When a database is accessed by multiple connections, and one of the processes modifies the database,
the SQLite database is locked until that transaction is committed. The timeout parameter specifies how
long the connection should wait for the lock to go away until raising an exception. The default for the
timeout parameter is 5.0 (five seconds).

If given database name does not exist then this call will create the database. You can specify filename
with required path as well if you want to create database anywhere else except in current directory.

2

connection.cursor([cursorClass])
This routine creates a cursor which will be used throughout of your database programming with Python.

This method accepts a single optional parameter cursorClass. If supplied, this must be a custom cursor
class that extends sqlite3.Cursor.

3 cursor.execute(sql [, optional parameters])

CHAPTER

50

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

This routine executes an SQL statement. The SQL statement may be parameterized (i. e. placeholders
instead of SQL literals). The sqlite3 module supports two kinds of placeholders: question marks and
named placeholders (named style).

For example:cursor.execute("insert into people values (?, ?)", (who, age))

4

connection.execute(sql [, optional parameters])

This routine is a shortcut of the above execute method provided by cursor object and it creates an
intermediate cursor object by calling the cursor method, then calls the cursor's execute method with the
parameters given.

5

cursor.executemany(sql, seq_of_parameters)

This routine executes an SQL command against all parameter sequences or mappings found in the
sequence sql.

6

connection.executemany(sql[, parameters])

This routine is a shortcut that creates an intermediate cursor object by calling the cursor method, then
calls the cursor.s executemany method with the parameters given.

7

cursor.executescript(sql_script)

This routine executes multiple SQL statements at once provided in the form of script. It issues a COMMIT
statement first, then executes the SQL script it gets as a parameter. All the SQL statements should be
separated by semi colon (;).

8

connection.executescript(sql_script)

This routine is a shortcut that creates an intermediate cursor object by calling the cursor method, then
calls the cursor's executescript method with the parameters given.

9

connection.total_changes()

This routine returns the total number of database rows that have been modified, inserted, or deleted
since the database connection was opened.

10

connection.commit()

This method commits the current transaction. If you don.t call this method, anything you did since the last
call to commit() is not visible from other database connections.

11

connection.rollback()

This method rolls back any changes to the database since the last call to commit().

12
connection.close()

This method closes the database connection. Note that this does not automatically call commit(). If you

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

just close your database connection without calling commit() first, your changes will be lost!

13

cursor.fetchone()

This method fetches the next row of a query result set, returning a single sequence, or None when no
more data is available.

14

cursor.fetchmany([size=cursor.arraysize])

This routine fetches the next set of rows of a query result, returning a list. An empty list is returned when
no more rows are available. The method tries to fetch as many rows as indicated by the size parameter.

15

cursor.fetchall()

This routine fetches all (remaining) rows of a query result, returning a list. An empty list is returned when
no rows are available.

Connecting To Database
Following Python code shows how to connect to an existing database. If database does not exist, then it will be
created and finally a database object will be returned.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

Here, you can also supply database name as the special name :memory: to create a database in RAM. Now,
let's run above program to create our database test.db in the current directory. You can change your path as per

your requirement. Keep above code in sqlite.py file and execute it as shown below. If database is successfully
created, then it will give the following message:

$chmod +x sqlite.py

$./sqlite.py

Open database successfully

Create a Table
Following Python program will be used to create a table in previously created database:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute('''CREATE TABLE COMPANY

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 ADDRESS CHAR(50),

 SALARY REAL);''')

print "Table created successfully";

conn.close()

When above program is executed, it will create COMPANY table in your test.db and it will display the following

messages:

Opened database successfully

Table created successfully

INSERT Operation
Following Python program shows how we can create records in our COMPANY table created in above example:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (1, 'Paul', 32, 'California', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00)");

conn.commit()

print "Records created successfully";

conn.close()

When above program is executed, it will create given records in COMPANY table and will display the following
two lines:

Opened database successfully

Records created successfully

SELECT Operation
Following Python program shows how we can fetch and display records from our COMPANY table created in
above example:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")

for row in cursor:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Operation done successfully";

conn.close()

When above program is executed, it will produce the following result:

Opened database successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000.0

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

UPDATE Operation
Following Python code shows how we can use UPDATE statement to update any record and then fetch and
display updated records from our COMPANY table:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute("UPDATE COMPANY set SALARY = 25000.00 where ID=1")

conn.commit

print "Total number of rows updated :", conn.total_changes

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")

for row in cursor:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Operation done successfully";

conn.close()

When above program is executed, it will produce the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Opened database successfully

Total number of rows updated : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000.0

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

DELETE Operation
Following Python code shows how we can use DELETE statement to delete any record and then fetch and
display remaining records from our COMPANY table:

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute("DELETE from COMPANY where ID=2;")

conn.commit

print "Total number of rows deleted :", conn.total_changes

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")

for row in cursor:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Operation done successfully";

conn.close()

When above program is executed, it will produce the following result:

Opened database successfully

Total number of rows deleted : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

	SQLite Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer Notice
	SQLite Overview
	What is SQLite?
	Why SQLite?
	History:
	SQLite Limitations:
	SQLite Commands:
	DDL - Data Definition Language:
	DML - Data Manipulation Language:
	DQL - Data Query Language:

	SQLite Installation
	Install SQLite On Windows
	Install SQLite On Linux
	Install SQLite On Mac OS X

	SQLite Commands
	Formatting output
	The sqlite_master Table

	SQLite Syntax
	Case Sensitivity
	Comments
	SQLite Statements
	SQLite ANALYZE Statement:
	SQLite AND/OR Clause:
	SQLite ALTER TABLE Statement:
	SQLite ALTER TABLE Statement (Rename):
	SQLite ATTACH DATABASE Statement:
	SQLite BEGIN TRANSACTION Statement:
	SQLite BETWEEN Clause:
	SQLite COMMIT Statement:
	SQLite CREATE INDEX Statement:
	SQLite CREATE UNIQUE INDEX Statement:
	SQLite CREATE TABLE Statement:
	SQLite CREATE TRIGGER Statement :
	SQLite CREATE VIEW Statement :
	SQLite CREATE VIRTUAL TABLE Statement:
	SQLite COMMIT TRANSACTION Statement:
	SQLite COUNT Clause:
	SQLite DELETE Statement:
	SQLite DETACH DATABASE Statement:
	SQLite DISTINCT Clause:
	SQLite DROP INDEX Statement :
	SQLite DROP TABLE Statement:
	SQLite DROP VIEW Statement :
	SQLite DROP TRIGGER Statement :
	SQLite EXISTS Clause:
	SQLite EXPLAIN Statement :
	SQLite GLOB Clause:
	SQLite GROUP BY Clause:
	SQLite HAVING Clause:
	SQLite INSERT INTO Statement:
	SQLite IN Clause:
	SQLite Like Clause:
	SQLite NOT IN Clause:
	SQLite ORDER BY Clause:
	SQLite PRAGMA Statement:
	SQLite RELEASE SAVEPOINT Statement:
	SQLite REINDEX Statement:
	SQLite ROLLBACK Statement:
	SQLite SAVEPOINT Statement:
	SQLite SELECT Statement:
	SQLite UPDATE Statement:
	SQLite VACUUM Statement:
	SQLite WHERE Clause:

	SQLite Data Type
	SQLite Storage Classes:
	SQLite Affinity Type:
	SQLite Affinity and Type Names:
	Boolean Datatype:
	Date and Time Datatype:

	SQLite Create Database
	Syntax:
	Example:
	The .dump Command

	SQLite Attach Database
	Syntax:
	Example:

	SQLite Detach Database
	Syntax:
	Example:

	SQLite Create Table
	Syntax:
	Example:

	SQLite Drop Table
	Syntax:
	Example:

	SQLite Insert Query
	Syntax:
	Example:
	Populate one table using another table:

	SQLite Select Query
	Syntax:
	Example:
	Setting output column width:
	Schema Information:

	SQLite Operators
	SQLite Arithmetic Operators:
	Example
	SQLite Comparison Operators:
	Example
	SQLite Logical Operators:
	Example
	SQLite Bitwise Operators:
	Example

	SQLite Expressions
	Syntax:
	SQLite - Boolean Expressions:
	SQLite - Numeric Expression:
	SQLite - Date Expressions:

	SQLite Where Clause
	Syntax:
	Example:

	SQLite AND and OR Operator
	The AND Operator:
	Syntax:
	Example:
	The OR Operator:
	Syntax:
	Example:

	SQLite Update Query
	Syntax:
	Example:

	SQLite Delete Query
	Syntax:
	Example:

	SQLite Like Clause
	Syntax:
	Example:

	SQLite Glob Clause
	Syntax:
	Example:

	SQLite LIMIT Clause
	Syntax:
	Example:

	SQLite Order By Clause
	Syntax:
	Example:

	SQLite Group By Clause
	Syntax:
	Example:

	SQLite Having Clause
	Syntax:
	Example:

	SQLite Distinct Keyword
	Syntax:
	Example:

	SQLite PRAGMA
	Syntax:
	auto_vacuum Pragma
	cache_size Pragma
	case_sensitive_like Pragma
	count_changes Pragma
	database_list Pragma
	encoding Pragma
	freelist_count Pragma
	index_info Pragma
	index_list Pragma
	journal_mode Pragma
	max_page_count Pragma
	page_count Pragma
	page_size Pragma
	parser_trace Pragma
	recursive_triggers Pragma
	schema_version Pragma
	secure_delete Pragma
	sql_trace Pragma
	synchronous Pragma
	temp_store Pragma
	temp_store_directory Pragma
	user_version Pragma
	writable_schema Pragma

	SQLite Constraints
	NOT NULL Constraint
	EXAMPLE:
	DEFAULT Constraint
	EXAMPLE:
	UNIQUE Constraint
	EXAMPLE:
	PRIMARY KEY Constraint
	EXAMPLE:
	CHECK Constraint
	EXAMPLE:
	Dropping Constraints:

	SQLite Joins
	The CROSS JOIN
	The INNER JOIN
	The OUTER JOIN

	SQLite UNIONS Clause
	Syntax:
	Example:
	COMPANY TABLE
	The UNION ALL Clause:
	Syntax:
	Example:

	SQLite NULL Values
	Syntax:
	Example:

	SQLite ALIAS Syntax
	Syntax:
	Example:

	SQLite Triggers
	Syntax:
	Example
	Listing TRIGGERS
	Dropping TRIGGERS

	SQLite Indexes
	The CREATE INDEX Command:
	Single-Column Indexes:
	Unique Indexes:
	Composite Indexes:
	Implicit Indexes:
	Example
	The DROP INDEX Command:
	When should indexes be avoided?

	SQLite Indexed By
	Syntax
	Example

	SQLite Alter Command
	Syntax:
	Example:

	SQLite Truncate Table
	Syntax:
	Example:

	SQLite Views
	Creating Views:
	Example:
	Dropping Views:

	SQLite TRANSACTIONS
	Properties of Transactions:
	Transaction Control:
	The BEGIN TRANSACTION Command:
	The COMMIT Command:
	The ROLLBACK Command:
	Example:

	SQLite Sub Queries
	Subqueries with the SELECT Statement:
	Example:
	Subqueries with the INSERT Statement:
	Example:
	Subqueries with the UPDATE Statement:
	Example:
	Subqueries with the DELETE Statement:
	Example:

	SQLite AutoIncrement
	Syntax:
	Example:

	SQLite Injection
	Preventing SQL Injection:

	SQLite Explain
	Syntax:
	Example:

	SQLite Vacuum
	Manual VACUUM
	Auto-VACCUM

	SQLite Date & Time
	Time Strings:
	Modifiers
	Formatters:
	Examples

	SQLite Useful Functions
	SQLite COUNT Function
	SQLite MAX Function
	SQLite MIN Function
	SQLite AVG Function
	SQLite SUM Function
	SQLite RANDOM Function
	SQLite ABS Function
	SQLite UPPER Function
	SQLite LOWER Function
	SQLite LENGTH Function
	SQLite sqlite_version Function

	SQLite C/C++ Tutorial
	C/C++ Interface APIs
	Connecting To Database
	Create a Table
	INSERT Operation
	SELECT Operation
	UPDATE Operation
	DELETE Operation

	SQLite Java Tutorial
	Connecting To Database
	Create a Table
	INSERT Operation
	SELECT Operation
	UPDATE Operation
	DELETE Operation

	SQLite PHP Tutorial
	PHP Interface APIs
	Connecting To Database
	Create a Table
	INSERT Operation
	SELECT Operation
	UPDATE Operation
	DELETE Operation

	SQLite Perl Tutorial
	DBI Interface APIs
	Connecting To Database
	Create a Table
	INSERT Operation
	SELECT Operation
	UPDATE Operation
	DELETE Operation

	SQLite Python
	Python sqlite3 module APIs
	Connecting To Database
	Create a Table
	INSERT Operation
	SELECT Operation
	UPDATE Operation
	DELETE Operation

