170 Chapter 6 Association Rules

The large itemsets are also said to be downward closed because if an itemset satisfies
the minimum support requirements, sO do all of its subsets. Looking at the contrapos-
itive of this, if we know that an itemset is small, we need not generate any super-
sets of it as candidates because they also must be small. We use the lattice shown in
Figure 6.1(a) to illustrate the concept of this important property. In this case there are
four items {4, B, C, D}. The lines in the lattice represent the subset relationship, so the
large itemset property says that any set in a path above an itemset must be large if the
original itemset is large. In Figure 6.1 (b) the nonempty subsets of ACD! are seen as
{AC,AD,CD, A, C, D}. If ACD is large, so is each of these subsets. If any one of these
subsets is small, then so is ACD.

The basic idea of the Apriori algorithm is to generate candidate itemsets of a
particular size and then scan the database to count these to see if they are large. During
scan i, candidates of size i, C; are counted. Only those candidates that are large are used
to generate candidates for the next pass. That is L; are used to generate Cj+1. An itemset
is considered as a candidate only if all its subsets also are large. To generate candidates
of size i +1, joins are made of large itemsets found in the previous pass. Table 6.5 shows
the process using the data found in Table 6.1 with s = 30% and @ = 50%. There are no
candidates of size three because there is only one large itemset of size two.

An algorithrh called Apriori-Gen is used to generate the candidate itemsets for each
pass after the first. All singleton itemsets are used as candidates in the first pass. Here
the set of large itemsets of the previous pass, Li—1, is joined with itself to determine
the candidates. Individual itemsets must have all but one item in common in order to be
combined. Example 6.3 further illustrates the concept. After the first scan, every large
itemset is combined with every other large itemset.

i @
A B C D A B C D
Sl RS
AB AC AD BC BD CD AB AC AD BC BD CD
oo PR
ABC ABD ACD BCD ABC ABD ACD BCD
\/
ABCD ABCD
(a) Lattice of itemsets for {A, B, C, D} (b) Subsets of ACD

FIGURE 6.1: Downward closure.

I Following the usual convention with association rule discussions, we simply list the items in the set rather
than using the traditional set notation. So here we use ACD to mean {A,C, D}.




Section 6.3 Basic Algorithms 171

TABLE 6.5: Using Apriori with Transactions in Table 6.1

Pass Candidates Large Itemsets
. 1 {Beer}, {Bread}, {Jelly}, {Beer}, {Bread},
{Milk}, {PeanutButter} {Milk}, {PeanutButter}
2 {Beer, Bread}, {Beer, Milk}, {Bread, PeanutButter}

{Beer, PeanutButter}, {Bread, Milk},
{Breaq, PeanutButter}, {Milk, PeanutButter}

~

TABLE 6.6: Sample Clothing Transactions

Transaction Items Transaction Items

1 Blouse 1 TShirt

t Shoes, Skirt, TShirt 12 Blouse, Jeans, Shoes, Skirt, TShirt
t3 Jeans, TShirt 13 Jeans, Shoes, Shorts, TShirt
14 Jeans, Shoes, TShirt 14 Shoes, Skirt, TShirt

t5 Jeans, Shorts 115 Jeans, TShirt

16 Shoes, TShirt 16 Skirt, TShirt

t7 Jeans, Skirt 17 Blouse, Jeans, Skirt

fg Jeans, Shoes, Shorts, TShirt | #g Jeans, Shoes, Shorts, TShirt
fg Jeans 9 Jeans

1o Jeans, Shoes, TShirt 10 Jeans, Shoes, Shorts, TShirt

EXAMPLE 6.3

A woman’s clothing store has 10 cash register transactions during one day, as shown in
Table 6.6. When Apriori is applied to the data, during scan one, we have six candidate
itemsets, as seen in Table 6.7. Of these, 5 candidates are large. When Apriori-Gen is
applied to these 5 candidates, we combine every one with all the other 5. Thus, we
get a total of 4 +3 +2 4 1 = 10 candidates during scan two. Of these, 7 candidates
are large. When we apply Apriori-Gen at this level, we join any set with another set
that has one item in common. Thus, {Jeans, Shoes} is joined with {Jeans, Shorts} but
not with {Shorts, TShirt}. {Jeans, Shoes} will be joined with any other itemset con-
taining either Jeans or Shoes. When it is joined, the new item is added to it. There
are four large itemsets after scan four. When we go to join these we must match on
two of the three attributes. For example {Jeans, Shoes, Shorts} After scan four, there
is only one large itemset. So we obtain no new itemsets of size five to count in the

next pass. joins with {Jeans, Shoes, TShirt} to yield new candidate {Jeans, Shoes, Shorts,
TShirt}.

The Apriori-Gen algorithm is shown in Algorithm 6.2. Apriori-Gen is guaranteed
to generate a superset of the large itemsets of size i, C; D L;, when input L;_;. A




172 Chapter 6 Association Rules

TABLE 6.7: Apriori-Gen Example

Scan Candidates Large Itemsets

1 {Blouse}, {Jeans}, {Shoes}, {Jeans}, {Shoes}, {Shorts}
{Shorts}, {Skirt}, {TShirt} {Skirt}, {Tshirt}

2 {Jeans, Shoes}, {Jeans, Shorts}, {Jeans, Skirt}, {Jeans, Shoes}, {Jeans, Shorts},
{Jeans, TShirt}, {Shoes, Shorts}, {Shoes, Skirt}, {Jeans, TShirt}, {Shoes, Shorts},
{Shoes,TShh@,{Shoﬁs,Skﬂﬂ,{Shoﬂs,TShhﬂ, {Shoe&'TShkﬂ,{Shons,TShhTL
{Skirt, TShirt} ~. _ {Skirt, TShirt}

3 {Jeans, Shoes, Shorts}, {Jeans, Shoes, TShirt}, {Jeans, Shoes, Shorts},

{Jeans, Shorts, TShirt}, {Jeans, Skirt, TShirt}, {Jeans, Shoes, TShirt},

{Shoes, Shorts, TShirt}, {Shoes, Skirt, TShirt}, {Jeans, Shorts, TShirt},

{Shorts, Skirt, TShirt} {Shoes, Shorts, TShirt}

{Jeans, Shoes, Shorts, TShirt} {Jeans, Shoes, Shorts, TShirt}
5 ] 4]

pruning step, not shown, could be added at the end of this algorithm to prune away any
candidates that have subsets of size i — 1 that are not large.

ALGORITHM 6.2

Input:

L;_. //Large itemsets of size i—1
Output:

4 //Candidates of size i
Apriori-gen algorithm:

ey =5

for each I€L;_; do
for each J# I€L;_ 1 do
if i—2 of the elements in I and J are equal then

C@: C@U{IUJ};

\ \
Given the large itemset property and Apriori-Gen, the Apriori algorithm itself (see

Algorithm 6.3) is rather straightforward. In this algorithm we use c¢; to be the count for
item I; € I.

ALGORITHM 6.3

Input:
I //Itemsets
D //Database of transactions
s //Support
Output:
L //Large itemsets

Apriori algorithm:
k=0; //k is used as the scan number.
L=

6.3.2




Section 6.3 Basic Algorithms 173

iy =T; //Initial candidates are set to be the items.
repeat
S k=k+1;
Ly =0;
R for each I; € Cx do
) c;=0; // Initial counts for each itemset are 0.
for each t; €D do i ~ coc\ 4 f‘ov,s"o:f(*v:a%'
borts), for each I; € Cx do
Shorts), if I; €ty then
TShirt}, = apsaLs

for each I; € Cx do
if c; > (sx|D|) do
Lx=LxUI;;
L= LW L ; Ny
Ck+1 = Apriori-Gen(Lk)
until Ciy1 =;

The Apriori algorithm assumes that the database is memory-resident. The maximum
number of database scans is one more than the cardinality of the largest large itemset.
This potentially large number of database scans is a weakness of the Apriori approach.

6.3.2 Sampling Algorithm

To facilitate efficient counting of itemsets with large databases, sampling of the database
may be used. The original sampling algorithm reduces the number of database scans
to one in the best case and two in the worst case. The database sample is drawn such
that it can be memory-resident. Then any algorithm, such as Apriori, is used to find the
| large itemsets for the sample. These are viewed as potentially large (PL) itemsets and
used as candidates to be counted using the entire database. Additional candidates are
| determined by applying the negative border function, BD~, against the large itemsets
from the sample. The entire set of candidates is then C = BD ™ (PL) U PL. The negative
border function is a generalization of the Apriori-Gen algorithm. It is _defined as the
minimal set of itemsets that are not in PL, but whose subsets are all in PL. Example 6.4
illustrates the idea.

EXAMPLE 6.4

Suppose the set of items is {A, B, C, D}. The set of large itemsets found to exist in a
sample of the database is PL = {A, C, D, CD}. The first scan of the entire database,
then, generates the set of candidates as follows: C = BD~(PL) UPL = {B,AC,AD} U
{A, C, D, CD}. Here we add AC because both A and C are in PL. Likewise we add AD.
We could not have added ACD because neither AC nor AD is in PL. When looking at
the lattice (Figure 6.2), we add only sets where all subsets are already in PL. Note that
we add B because all its subsets are vacuously in PL.

Algorithm 6.4 shows the sampling algorithm. Here the Apriori algorithm is shown
to find the large itemsets in the sample, but any large itemset algorithm could be used.
Any algorithm to obtain a sample of the database could be used as well. The set of large




