Red Black Tree Mechanics

Susan Haynes

11/22/08

prepared for Dr Evett’s COSC 311 class, Fall 2008

This is a “turn-the-crank” explanation of how to insert to a red-black tree.

This write-up makes no attempt to explain red-black trees nor to explain why the rules described here will maintain a red-black tree.

Remember!! A red-black tree is like an AVL tree in that it has both sorted characteristic and balancing characteristic. Like the AVL tree, intermediate trees (in the middle of a red-black insertion/deletion) will always maintain the sorted characteristic and will not maintain the structural (balancing) characteristic. At the end of an insertion (or deletion) operation, both the sort order and the balance are correct.

You must use a good data structures and algorithms book or other good source along with this hurdy-gurdy in order to really understand what is going on.

Notation and Definitions

 X, P, and G designate 3 nodes: P is the parent of X; G is the grandparent of X.

A newly inserted node will be referred to as X. Also, a node that causes a rule violation is referred to as X. For example, when child and parent have a red-red conflict, X is the child (and P is the parent).

X is an outside grandchild of G (2 cases):

G’s right child is P, P’s right child is X

G’s left child is P, P’s left child is X

X is an inside grandchild of G (2 cases):

G’s right child is P, P’s left child is X

G’s left child is P, P’s right child is X

Red-Black Tree Rules
1. Every node is red or black (any node, except the root, can change color as demanded by balancing operations).

2. The root is black.

3. If a node is red, its children must be black. (There is no converse rule. A black node can have black children)

4. Every path from root to leaf must contain the same number of black nodes.

Insertion

The node you are inserting is always colored red, except when you are inserting the root (i.e., the first node to an empty tree). Insertion proceeds as usual for a binary search tree, starting at root, making a left or right decision at the root of each subtree, and proceeding to leaf level where actual insertion takes place.

When inserting a new node, there are three processes that are followed in the order given here.

1. Color flips on the way down.

When you encounter a black node with two red children, change the children to black and (unless the encountered black node was the root) change the encountered black node to red.

If, after doing the color change rule, you find you have violated the red-red rule, correct this with a rotation as described in process #2 (which immediately follows)

2. Rotate to correct color errors on the way down.

On the way down, after a color change causes a red-red conflict, you will need to rotate.

Name the red-red pair, P (parent) and X (“offending” child). X’s grandparent is called G.

2A. When X is an outside grandchild:

1. switch color of G

2. switch color of P

3. rotate P and G to raise X.

2B. When X is an inside grandchild,

1. switch color of G

2. switch color of X

3. rotate X with P to raise X

4. rotate X with G to raise X

3. Insert the new node as a red node
Name P (parent) and G (grandparent) of the newly inserted X as for #2 above.

There are three situations:

3A. P is black. You’re done!

3B. P is red, X is an outside grandchild:

1. change color of G

2. change color of P

3. rotate P and G to raise X

3C. P is red, X is an inside grandchild:

1. change color of G

2. change color of X (not P!!!)

3. rotate X and P to raise X

4. rotate X (again) and G to raise X

Example
I’ll insert the following nodes to an initially empty red-black tree:

60, 20, 75, 10, 85, 100, 80, 35, 5, 18, 2, 4, 3

To repeat! The mechanical exercise of red-black tree insertion is not sufficient for the level of understanding expected from a computer scientist. After you have the mechanics pretty well down, go through that explanation in your good data structures book.

1. Insert 60

New node is the root. Change color to black

2. Insert 20

On the way down, at each node check for parent with two red children (Color flip (#1) would be required). Since there is only the black root with no children, no color flip is needed. Since there is no color flip, there are no correcting rotations (2) required.

Insert the red node 20 (#3) as child of black parent, P, 60. P is black, so we’re done (#3A).

3. Insert 75
Same situation as for “insert 20” -- no color flip is required.

4. Insert 10

At root (60), we require color change (#1): black parent (60) with two red children (20, 75) (Flip the colors of the children (to black); the color of 60 cannot change because root must remain black.

Intermediate tree:

 Insert red 10 as left child of 20. P (20) is black (#3A), so we’re done with insert.

(Aside: after each insertion is completed, you, the student, should check to make sure the red-black tree satisfies the four rules).

5. Insert 85

At 60, we don’t need color change.

At 75, we don’t need color change.

Insert 85 as right child of 75. Since P=75 is black (#3A), we’re done with the insertion.

6. Insert 100
At 60, we don’t need color change

At 75, we don’t need color change

At 85, we don’t need color change (85 has no children)

Insert 100 as right child of 85.

Intermediate tree:

We are in situation #3B:

 P=85 is red; X=100 is an outside grandchild of G=75 (
Change color of G (75) to red.

Change color of P (85) to black

Rotate P (85) and G (75) to raise X

7. Insert 80.

At 60, we don’t need color change.

At 85, we have black 85 with two red children 75 and 100 (#1) (change colors of 85, 75, 100.

Intermediate tree

Since we made a color change, we have to check for any required rotations to fix the tree (#2). We observe there is no red-red conflict with 85 (specifically between 85 and its parent 60), so there is no need for a rotation to fix the tree.

At 75, we can insert 80 as new right child.

80’s parent, 75 is black (#3A). We’re done.

8. Insert 35

At 60, we don’t need color change.

At 20, we don’t need color change.

Insert 35 as new right child of 20. Since P=20 is black (#3A), insertion is done.

9. Insert 5
At 60, no color change is needed.

At 20, we have black parent (20) with two red children (10, 35). #1 says flip colors of 20, 10, and 35.

Intermediate tree:

We notice there is no red-red conflict associated with 20 (#2), so we can continue down the tree.

Insert 5 as new left child of 10. Since 10 (P) = black (#3A), we are done.

Final tree:

10. Insert 18
At 60, we see black parent (60) with two red children. Since 60 is the root, we need to change color of the children (20 and 85) to black.

Intermediate tree:

There is no red-red conflict (#2) (also, because 60 was the root, there won’t be a red-red conflict), so we continue down.

At 20, no color change is needed.

At 10, we insert the new 18 as 10’s right child.

Final tree:

11. Insert 2
At 60, no color change needed.

At 20, no color change needed.

At 10, we have a black parent,10, with two red children, 5 and 18 (#1). Flip colors on 10, 5, and 18.

Intermediate tree:

There is no red-red conflict (#2) caused by the color flip, so proceed down.

At 5, can insert 2 as its new left child.

12. Insert 4
At 60, no color change.

At 20, no color change

At 10, no color change.

At 5, no color change.

At 2, insert 4 as new right child.

Intermediate tree:

You can see we’re in situation #3B (X=4, P=2, G=5), 4 is inside grandchild of 5.

 Change color of G (5) (to red)

 Change color of X (4) to black

Intermediate tree:

 Rotate X (4) and P (2) to raise X

Intermediate tree:

Rotate X (4) and G (5) to raise X

Final tree:

13. Insert 3
At 60, no color change.

At 20, no color change.

At 10, no color change.

At 4, 4 is the black parent of two red children (#1) (change 4 to red, change 2 and 5 to black.

Intermediate tree:

But we now have a red-red conflict between 4 (X) and 10 (P), i.e., #2A. 4 is an outside grandchild of 20, so do the following:

Switch color of 20 (G) to red

Switch color of 10 (P) to black

Rotate 10 (P) and 20(G) to raise 4 (X).

Intermediate tree:

Continue down the tree:

At 2 insert 3 to be 2’s right child. P (2) is black, so we’re done.

Final tree:

60

60

20

60

20

20

20

75

60

75

10

60

75

60

20

75

10

85

85

10

75

20

60

100

100

85

10

75

20

60

100

85

10

75

20

60

100

85

10

75

20

60

80

80

100

85

10

75

20

60

35

35

80

100

85

10

75

20

60

35

80

100

85

10

75

20

60

5

5

35

80

100

85

10

75

20

60

5

35

80

100

85

10

75

20

60

18

5

35

80

100

85

10

75

18

20

60

18

5

35

80

100

85

10

75

20

60

2

2

18

5

35

80

100

85

10

75

20

60

4

2

18

5

35

100

85

10

75

20

4

60

4

2

18

5

35

100

85

10

75

20

60

2

 4

18

5

35

100

85

10

75

20

60

80

2

 4

18

5

35

100

85

80

80

80

10

75

20

60

80

2

 4

 18

5

35

100

85

10

75

20

60

80

2

 4

 18

5

35

100

85

10

75

 20

60

3

Red/Black Tree Mechanics
1
Susan Haynes

11/22/08

