
Big Oh, et cetera

Definitions

Big Oh
A function f(n) is O(g(n)) if there exists c > 0 and n0 such that
f(n) <= c g(n) for all n >= n0 .
A common way to express f(n) is O(g(n)) is to say f(n) = O(g(n)).

STOP: Draw a picture of what this means.

STOP: What is the domain of c? What is the domain of n0?

STOP: Suppose there are two functions g1(n) and g2(n) that both satisfy the definition of
Big Oh for f(n). (I.e., f(n) is O(g1(n)) and f(n) is O(g2(n)). Draw a picture. What does
that mean? Is there a way to choose a best g(n)?

Big Omega
A function f(n) is Ω(g(n)) if there exists c > 0 and n0 such that
f(n) >= c g(n) for all n >= n0 .

Big Theta
A function f(n) is Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Ω(g(n)).

STOP: Think about the intent of the definition of Ω(). Do the c and the n0 have to be
the same for the Big Oh definition and for the Ω definition? If you have two different
c’s and/or two different n0’s, how can you resolve them?

Common g(n) functions in sequential algorithms and their names:
g(n) name
1 constant
log n logarithmic
log2 n log-squared
n linear
n log n log-linear
n2 quadratic
n3 cubic
nk polynomial
2n exponential
2! factorial

STOP: What does is mean when one says a function is O(m n) ?

Rules for “combining” growth rates

*If T1(n) = O(g1(n)) and T2(n) = O(g2(n) then

a. T1(n) + T2(n) = O (g1(n) + g2(n))

also, T1(n) + T2(n) = max (O (g1(n)), O(g2(n)))

b. T1(n) * T2(n) = O(g1(n) * g2(n))

* If T(n) is a polynomial of degree k, then T(n) is O(nk).

Also, if T(n) is a polynomial of degree k, then T(n) is Ω (nk).

STOP: Do the rules make sense?

STOP: Draw a picture of the last “rule” stated above.

 go to the white paper on Big Oh and work out computing c and n0.

Solve the same problem to compute Ω()

 go to the white paper on recursion, make sure everyone is ok with recursion.

 go to the white paper on recurrence, work out

Merge sort.
 Binary search

Review tree and terms:
 Height(n): length of longest path node n to leaf
 Depth(n): length of path from root to node n
 Internal (inner) node: any node that is not a leaf.
 External (outer) node: any node that is a leaf.
 Perfect tree: a full tree (all levels are at the same depth)
 Complete tree: every level, EXCEPT POSSIBLY THE LAST, is completely filled
AND all nodes are as far to the left as possible. A heap is a complete binary tree.

Properties of binary trees (copied from wikipedia)

 * The number of nodes n in a perfect binary tree can be found using this formula: n =
2h + 1 − 1 where h is the height of the tree.

 * The number of nodes n in a complete binary tree is minimum: n = 2h and
maximum: n = 2h + 1 − 1 where h is the height of the tree.

 * The number of leaf nodes L in a perfect binary tree can be found using this formula:
L = 2h where h is the height of the tree.

 * The number of nodes n in a perfect binary tree can also be found using this formula:
n = 2L − 1 where L is the number of leaf nodes in the tree.

 * The number of NULL links in a Complete Binary Tree of n-node is (n+1).

 * The number of internal nodes in a Complete Binary Tree of n-node is (n/2).

 * For any non-empty binary tree with n0 leaf nodes and n2 nodes of degree 2, n0 =
n2 + 1.

STOP: What does the depth of a complete binary search tree say about insertion time?

Review rotations

Review AVL tree

STOP: HOMEWORK FOR THE WEEKEND (not to be turned in)
(1) What is a threaded binary search tree?
(2) Show the threaded BST after inserting the following in order: 15, 20, 10, 5, 19, 11,
19, 13, 18.
(3) What is the insertion algorithm for a threaded BST and what is its running time?

New tree: kd tree

New tree: splay tree

New tree: Fibonacci tree

