
COSC 445 Project #1 Lexical Analysis Distributed: 14 Jan 2010
 Due: 28 Jan 2010

See text pp 398-9 for specification of tokens in Triangle.

Synopsis: Give DFAs, state transition tables, working code (single program) and a demonstration of a
tokenizer for the portion of the Triangle language.

Longer statement: Implement a tokenizer for the following tokens in Triangle:

• Integer-Literal
• Character-Literal
• Identifier
• Operator
• Blank

Supply the DFA and the state transition table for each (5 DFAs).
Implement the DFAs (table-driven or direct-coded or other) in a single program.

Emit each token (type and value) as it is recognized. Each token is represented as an object (or struct); the
format of the output is up to you.

The tokenizer should consume as many characters as possible (e.g., ‘abc’ is recognized as the single
token [Identifier, ‘abc’], not as the three tokens [Identifier, ‘a’], [Identifier,
‘b’], [Identifier, ‘c’])

End the program, with appropriate message, when an error is detected or when the end of the input
character stream is reached.

Test cases: Supply your test input streams in the following format (spreadsheet format). I’m giving a few
examples to clarify. There is no implication that a given condition will have exactly one test case.

Condition Test case
Successful Identifier-only stream x y value in var123
Identifier-failure x&a x y

There must be a minimum of 10 test cases. Your grade will include how well your test cases cover all
possible things that can go wrong.

Turn in:

• Hardcopy of program
• DFAs and state transition tables
• List of test cases
• Demo of program on your test cases (hard copy or live)

Grade based on:

• Program (65%)
o Satisfies specification
o Elegance and readability (see Style Standards)
o Demo

• DFAs and Transition tables (10%)
• Test cases (25%)

