
COSC 341/342 Project #3 C Linked List

Distributed: March 18, 2010 Due: April 8, 2010

Synopsis
Write code to implement a stack in C. The stack must be implemented as a linked list.
Each node in the stack contains a single char and a pointer to the next node.

Detailed information

Create a stack:
node * stack = null;

Write the following functions:

push(char a); pushes a single char to stack.

char pop(); pops stack and returns the popped value. If stack is empty, return
the char ‘!’. Do not exit.

printStack(); steps through stack from top to bottom, printing out each char. Put
a blank after each char in the output. The whole stack should go on one line of output.

int isEmpty(); returns 1 if stack is empty, returns 0 if stack is not empty.

void main (); is the main function. After each push or pop instruction, print the
entire stack.
 if (!isEmpty()) printStack();

push (‘a’);
 push (‘b’);
 x = pop();
 push (‘c’);
 x = pop();
 x = pop();
 push(‘d’);
 if (!isEmpty()) printStack();

Declare all variables appropriately.

Thoroughly test your program so that at demo time, you will be able to write a new
main() function with any order of stack operations.

Running the program
At the console, to run the C compiler:

cc prog.c

To execute the compiled program:
a.out
If a.out doesn’t work, use ./a.out

Turn in:
Hardcopy of code.
Screen shot for above order of push and pops.
Also, schedule a code demo and walk through.

Grade based on:
Meets specs: 80%
Coding style: 10%
Elegance: 10%

Extra credit: for an added 10%.
Use your stack routines to check for properly nested parentheses:
while (more input) {

if the next char is a ‘(‘, push it.
else if the next char is ‘)’,

pop the stack;
if the popped char is a ‘(‘ continue,

else report error and quit
if the next char is anything else, ignore it and continue.
}

At the end of the input, if the stack is empty report ‘success’, else report ‘fail’.

Comment on development:
You might want to think about implementing the stack as a 1D array of chars first. Once
you get that debugged and you understand what is happening, implement the final version
using pointers.

