
COSC 341 WINTER 2009 Programming Project #1

Distributed: January 27, 2009 Due: February 19, 2009, 7:30pm

Synopsis: Write an interpreter for a programming language (called “SL”) that has the
syntactic and semantic specification given below. Provide input to the interpreter (i.e.,
source programs in SL) in the shell or under control of your IDE.
 The executing interpreter provides a prompt (“>”) to the user. The user enters a
single statement in SL. The interpreter calculates the result, stores any side-effects, and
returns the result.
 The program can be written in Java, C/C++. Other languages, check with me.
Don’t bother checking for perl. Perl is too perfect a fit for this project (and is the
language you probably should use for this task). However, perl will do too many things
for you that I want you able to do yourself. No perl. Also no Pascal or Delphi.

Language Syntax:
Meta symbols: | , ::= * +
Terminals:
 (,) , if, while set, begin, + , * , = , < , print

Non terminals:
 input, arglist, variable, expression, value, variable, optr, op, integer, name

Start symbol:
 input

Productions:
input ::= expression
arglist ::= (variable*)
expression ::= value
 | variable
 | (if expression expression expression)
 | (while expression expression)
 | (set variable expression)
 | (begin expression+)
 | (optr expression*)
 | (bye)
optr ::= op
value ::= integer
op ::= + | - | * | = | < | print
variable ::= name
integer ::= sequence of digits, possibly preceded by minus sign
name ::= sequence of characters not an integer and not including a
 blank, (,) .

Language Semantics

The only values are integers. false is represented by 0, true is represented by any other
integer.

(if e1 e2 e3): If e1 evaluates to 0 then return the value of e2, else return the value
of e3.

(while e1 e2): If e1 evaluates to 0, return 0. Otherwise, evaluate e2 then re-
evaluate e1. Continue until e1 evaluates to 0.

(set x e): Evaluate e, assign that value to x, return that value.

(begin e1, e2, … en): Evaluate each of e1, e2, … en in order. Return the
value of en.

(bye) : A somewhat klugey way to exit the program. First print out a reasonably
formatted symbol table, including names and values, then do a clean exit.

Symbol table
Variables are not declared ahead of time. When a variable is used (e.g., as one of an
arglist, as an expression, or in a set statement) you do the following: Check the symbol
table to see if the variable is already present. If not present, then create a new entry for
the variable.
Java has some nice data structures for this. The rock-bottom simplest (but not so nice) is
an array of objects, where each object contains name and value. The set statement will
search for the object by its name, then modify the object’s value field.

Structure of the interpreter
The simplest structure is a read-eval-print loop. The main body of the program
contains these three calls. Read an expression, evaluate that expression, then print
the value.

eval is the most interesting part and can incorporate a recursive descent parser if you
wish. Eval will certainly be a recursive function. For example, consider
(print (begin (set a (+ 3 2))))
Assuming you don’t call eval on integers, then eval will be called four times
(print, begin, set, +). Here is the expression tree that visualizes this.

Errors
When the interpreter is not able to complete interpretation of an expression, it must
output some information to the user, do any internal clean up necessary (e.g., don’t
continue on the current input), then prepare for the next input from the user (e.g., provide
the prompt).

To simplify this, any side effects that were a result of partial execution of a statement will
not be unrolled -- they will remain in the symbol table.

The minimum output you need to provide is the following:
“Error. Current expression:” < text of the current expression goes here >

You may provide more useful output if you desire.

Testing
You will need to test exhaustively. You are responsible for making sure your program
works for legal input. Here is a short list of examples:

> 3

> (print 3)

> x

> (set x 2)

> x

> (print x)

> (+ x 3)

> (print (+ x 3))

> (set y (- x 3))

> y

> (if 0 (set a -3) (set a 3))

> (if x (set a -4) (set a 4))

> (if (< x 3) (set a -5) (set a 5))

> (begin (print x) (set x (- x 1))

> (while x (begin (print x) (set x (- x 1))))

> (bye)

Write programs
(1) Write a program that computes b^2 - 4 * a * c. To supply different actual
values of a, b, and c, use copy and paste, then manually replace the values in the three
set statements:
(begin

(set a 4)
(set b 2)
(set c -1)

 . . .
)

(2) Write a program that computes the mean and median of three numbers x, y, z. Again,
make the code generic so that you can hardcode different values for x, y, z easily.

Turn in:
- You’ll need to demo this program. We’ll organize demos later.
- Hard list of program
- Hard copy screen shot of testing statements given above. (You’ll be demoing other
tests)
- Hard copy screen shot of b*b - 4 * a * c computed for two different value sets
- Hard copy screen shot of mean and median computed for two different value sets

- Email versions accepted ONLY on the due date itself.

Grading:
 Meets specifications 80%
 Meets style standards 10%
 Code elegance 10%

Grading is based on 100%. No late projects accepted!

Bonus points given for code turned in early. 2% per day, up to 20% maximum. Get your
project time stamped by the front office or by me.

Start now.

Development advice: Start small. Debug one thing at a time. KISS.
Don’t get bogged down. If you get stuck somewhere, try to make progress
elsewhere.

Add to your debugging test cases as you develop new functionality. Every
time you add new functionality, run through the entire set of test cases.

Get the read-eval-print skeleton in place first thing.
Then, go in the following order:
 Tokenize.

expression ::= value
 Control the symbol table next and do expression ::= variable
 print
 set
 begin
 . . .

