Chapter 3: Syntax and Semantics

Matt Evett Dept. Computer Science Eastern Michigan University ©1999

Syntax and Semantics

- Syntax the form or structure of the expressions, statements, and program units
- Semantics the meaning of the expressions, statements, and program units
- Who must use language definitions?
 - Other language designers
 - Implementors
 - Programmers (the users of the language)

©Matt Ev ett

Syntax Definitions

- A sentence is a string of characters over some alphabet
- A *language* is a set of sentences
- A *lexeme* is the lowest level syntactic unit of a language (e.g., *, sum, begin)
- A token is a category of lexemes (e.g., identifier)

©Matt Evett

3

Using Formal Syntax

- Two general uses of formally defined languages:
 - Recognizers used in compilers. Given a syntax and a string, is the string sentence of the language?
 - Generators what we'll study. Given a syntax, generate legal sentences.

©Matt Evett

4

Formal Language Description

- Context-Free Grammars
 - Developed by Noam Chomsky in the mid-50s
 - Language generators, meant to describe the syntax of natural languages
 - Defined a class of languages called *context-free* languages
- Backus Normal Form (1959)
 - Invented by John Backus to describe Algol 58
 - BNF is equivalent to context-free grammars
 - A metalanguage for computer languages
 - A language used to describe other languages. 5

BNF

- Abstractions are used to represent classes of syntactic structures
 - Act like syntactic variables (also called nonterminal symbols)

<while_stmt> -> while <logic_expr> do <stmt>

This is a rule describing the structure of a while statement

©Matt Evett

BNF Grammar

- A grammar is a finite, nonempty set of rules (*R*), plus sets of terminal (*T*) and nonterminal (*N*) symbols.
- A rule has a left-hand side (LHS) and a righthandside (RHS)
 - The LH is a single terminal symbol
 - The RHS consisting of terminal and nonterminal symbols
 - The sets of terminals (*T*) and nonterminals (*N*) are mutually exclusive.

7

8

9

Nonterminals are indicated with "< ... >"

BNF Rule

An abstraction (or nonterminal symbol) can have more than one RHS

<stmt> -> <single_stmt> | begin <stmt_list> end

■ BNF rules are often recursive. Ex: a list

<ident_list> -> ident | ident,<ident_list>

Example Grammar

1. <program> -> <stmts>

- 2. <stmts> -> <stmt> | <stmt> ; <stmts>
- 3. <stmt> -> <var> = <expr>
- 4. <var> -> a | b | c | d
- 5. <expr> -> <term> + <term> | <term> <term>
- 6. <term> -> <var> | const

©Matt Evett

A derivation is a repeated application of rules, starting with the start symbol (ɛN)and yielding a sentence (all terminal symbols).

<program> => <stmts> => <stmt> R1 and R2

- => <var> = <expr> => a = <expr> R3, R4
- => a = <term> + <term> R5a
- => a = <var> + <term> R6a
- => a = b + <term> *R4*
- => a = b + const *R6b*

©Matt Ev ett

10

11

©Matt Evett

- A grammar, G, generates or defines a language, L, iff exactly those strings comprising L can be derived with G.
 - All elements of L must be derivable with G.
 - There must be no derivations for any strings not in L.

©Matt Ev ett

13

Ex: an ambiguous expression grammar

Example of EBNF	
BNF:	
<pre><cxpr> -> <expr> + <tem></tem></expr></cxpr></pre>	
EBNF:	
<pre><cxpr> -> <term> { (+ -) <term>} </term></term></cxpr></pre> <factor> { (* /) <factor>}</factor></factor>	
©Matt Evett	19

Syntax Graphs

Syntax Graphs - put the terminals in circles or ellipses and put

Type_identifier

•D-

20

constant

Identifier

 $\overline{}$

©Matt Evett

the nonterminals in rectangles; connect with lines with arrowheads EX: Pascal type declarations

└→①

► constant

- Parsing is the process of tracing or constructing a parse tree for an input string
- Parsers usually do not analyze lexemes
 - that is done by a *lexical analyzer*, which is called by the parser
- A recursive descent parser traces out a parse tree in top-down order; it is a top-down parser
- Each nonterminal in the grammar has a subprogram associated with it; the subprogram parses all sentential forms that the nonterminal can generate CMME Event 21

Building Recursive Descent	
Parser	
 Each grammar rule yields one recursive descent parsing subprogram. 	
Example: For the grammar:	
<term> -> <factor> {(* /) <factor>}</factor></factor></term>	
We could use the following recursive descent	
parsing subprogram.	
void term() {	
<pre>factor(); /* parse the first factor*/</pre>	
while (next_token == ast_code	
<pre>next_token = slash_code) {</pre>	
<pre>lexical(); /* get next token */</pre>	
<pre>factor(); /* parse the next factor */</pre>	
}	
}	
©Matt Evett	22

AG Components

- Let X0 -> X1 ... Xn be a rule.
- Functions of the form S(X0) = f(A(X1), ... A(Xn)) define *synthesized attributes*
- Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for i <= j <= n, define *inherited attributes*
- Initially, there are intrinsic attributes on the parse tree leaves

©Matt Evett

28

Example AG (1)

- Example: expressions of the form id + id
 - id's can be either int_type or real_type
 - types of the two id's must be the same
 - type of the expression must match it's expected type
- BNF:
 - <expr> -> <var> + <var>
 - <var> -> id
- Attributes:
 - actual_type synthesized for <var> and <expr>
 - expected_type inherited for <expr>

OMatt Even

Computing Attributes

- How to compute attributes?
 - If all attributes were inherited, the tree could be *decorated* in top-down order.
 - If all attributes were synthesized, the tree could be decorated in bottom-up order.
 - In most cases, both kinds of attributes are used, requiring a combination of top-down and bottom-up decoration.

©Matt Ev ett

31

32

Computing Attributes (2)

- 1. <expr>.env \leftarrow inherited from parent
- <var>[2].env ← <expr>.env 3. <var>[1].actual_type ← lookup (A, <var>[1].env) (synthesized...) <var>[2].actual_type ← lookup (B, <var>[2].env)
- <var>[1].actual_type =? <var>[2].actual_type (a predicate) 4. <expr>.actual_type ← <var>[1].actual_type

Annotate a parse tree	
■ See the board	
PMan Denate	2.2

Operational Semantics

- Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The change in the state of the machine (memory, registers, etc.) defines the meaning of the statement
- To use operational semantics for a high-level language, a VM in needed
 - A hardware pure interpreter would be too expensive
 - A software pure interpreter also has problems:
 - The detailed characteristics of the particular computer would make actions difficult to

Value of Operational Semantics Good if used informally Extremely complex if used formally (e.g., VDL)

Axiomatic Semantics

©Matt Ev ett

37

38

- Based on formal logic (first order predicate calculus)
- Original purpose: formal program verification
- Approach: Define axioms or inference rules for each statement type in the language (to allow transformations of expressions to other expressions)

©Matt Evett

The expressions are called assertions

Conditions An assertion before a statement (a)

- *precondition*) states the relationships and constraints among variables that are true at that point in execution
- An assertion following a statement is a postcondition
- A *weakest precondition* is the least restrictive precondition guaranteeing a postcondition
- Pre-post form: {P} statement {Q}
- An example: a := b + 1 {a > 1}
 - One possible precondition: {b > 10}
 Weakest precondition: {b > 0}

Axiomatic Proof Process

- Proving program correctness
- Program proof process:
 - The postcondition for the whole program is the desired result. Work back through the program to the first statement, inferring preconditions.
 - If the precondition on the first statement is the same as the program spec, the program is correct.

©Matt Evett

- Very complicated! (Their use, that is.)
- Loop invariants
- Interested? See 3.6.2.6

Loops (skip!) An inference rule for logical pretest loops For the loop construct: {P} while B do S end {Q} the inference rule is: (I and B) S {I}

©Matt Ev ett

43

44

- {I} while B do S {I and (not B)}
- where *I* is the loop invariant.

©Matt Ev ett

Developing Axiomatic Semantics

- Evaluation of axiomatic semantics:
- Developing axioms or inference rules for all of the statements in a language is difficult
- It is a good tool for correctness proofs, and an excellent framework for reasoning about programs, but it is not as useful for language users and compiler writers

©Matt Evett

Denotational Semantics
 Based on recursive function theory
 The most abstract semantics description method
 Originally developed by Scott and Strachey

 Originally developed by Scott and Strachey (1970)

©Matt Evett

48

Denotational Semantics (2)

The process of building a denotational spec for a language:

1. Define a mathematical object for each language entity

2. Define a function that maps instances of the language entities onto instances of the corresponding mathematical objects

- The meaning of language constructs are defined by only the values of the program's variables
- Meaning is assigned to grammar rules containing only a terminal as the RHS. 49

Denotational vs. Operational

- The difference between denotational and operational semantics:
 - In operational semantics, the state changes are defined by coded algorithms; in denotational semantics, they are defined by rigorous mathematical functions
- The state of a program is the values of all its current variables
 - s = {<i1, v1>, <i2, v2>, ..., <in, vn>}
- Let VARMAP be a function that, when given a variable name and a state, returns the current value of the variable CMatEvent 50

VARMAP(ij, s) = vj

D.S. for Numbers

1. Decimal Numbers

<dec_num> → 0|1|2|3|4|5|6|7|8|9 | <dec_num> (0|1|2|3|4| 5|6|7|8|9)

 $\begin{array}{l} M_{dec}('0') = 0, \ M_{dec}\left('1\,'\right) = 1, \ ..., \ M_{dec}\left('9'\right) = 9 \\ M_{dec}\left(<\!dec_num\!>\!'0'\right) = 10 * M_{dec}\left(<\!dec_num\!>\right) \\ M_{dec}\left(<\!dec_num\!>\!'1'\right) = 10 * M_{dec}\left(<\!dec_num\!>\!+1\right) \end{array}$

... M_{dec} (<dec_num> '9') = 10 * M_{dec} (<dec_num>) + 9

©Matt Evett

D.S. of Numeric Expression $M_{M_{c}(express)} \Delta = $	ons
<pre>case <expr> of</expr></pre>	
<var> =></var>	
if VARMAP(<var>, s) = undef</var>	
then error	
else VARMAP(<var>, s)</var>	
 hinary_expr> =>	
if (M _e (<binary_expr>.<left_expr>, s) = undef</left_expr></binary_expr>	
OR M _e (<binary_expr>.<right_expr>, s) =</right_expr></binary_expr>	
und ef)	
then error	
else	
if (<binary_expr>.<operator> = ë+i then</operator></binary_expr>	
M _e (<binary_expr>.<left_expr>, s) + M_e(<binary_expr>.<right_expr>, s)</right_expr></binary_expr></left_expr></binary_expr>	
else M _e (cbinary expr>. <left expr="">, s) *</left>	
M _e (sinary expr>. <right expr="">, s)</right>	
e	
©Matt Evett	52
UMatt Even	52

Loops	
 The meaning of the loop is the value of the program variables after the statements in the loop have been executed the prescribed number of times, assuming there have been no errors 	
 In essence, the loop has been converted from iteration to recursion, where the recursive control is mathematically defined by other recursive state mapping functions 	
 Recursion, when compared to iteration, is easier to describe with mathematical rigor 	
©Matt Evett	54

Use of D.S.

- Evaluation of denotational semantics:
- Can be used to prove the correctness of programs
- Provides a rigorous way to think about programs
- Can be an aid to language design
- Has been used in compiler generation systems

©Matt Evett