
Chapter 3: Syntax and
Semantics

Matt Evett

Dept. Computer Science

Eastern Michigan University
©1999

©Matt Evett 2

Syntax and Semantics

Syntax - the form or structure of the
expressions, statements, and program units

Semantics - the meaning of the expressions,
statements, and program units

Who must use language definitions?
– Other language designers

– Implementors

– Programmers (the users of the language)

©Matt Evett 3

Syntax Definitions

A sentence is a string of characters over
some alphabet

A language is a set of sentences

A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

A token is a category of lexemes (e.g.,
identifier)

©Matt Evett 4

Using Formal Syntax

 Two general uses of formally defined
languages:
– Recognizers - used in compilers. Given a

syntax and a string, is the string sentence of
the language?

– Generators - what we'll study. Given a syntax,
generate legal sentences.

©Matt Evett 5

Formal Language Description

Context-Free Grammars
– Developed by Noam Chomsky in the mid-50s

– Language generators, meant to describe the
syntax of natural languages

– Defined a class of languages called context-
free languages

Backus Normal Form (1959)
– Invented by John Backus to describe Algol 58

– BNF is equivalent to context-free grammars

– A metalanguage for computer languages
A language used to describe other languages.

©Matt Evett 6

BNF

Abstractions are used to represent classes of
syntactic structures
– Act like syntactic variables (also called

nonterminal symbols)

<while_stmt> -> while <logic_expr> do <stmt>

This is a rule describing the structure of a
while statement

©Matt Evett 7

BNF Grammar

A grammar is a finite, nonempty set of rules
(R), plus sets of terminal (T) and nonterminal
(N) symbols.

A rule has a left-hand side (LHS) and a right-
handside (RHS)
– The LH is a single terminal symbol

– The RHS consisting of terminal and
nonterminal symbols

– The sets of terminals (T) and nonterminals (N)
are mutually exclusive.

Nonterminals are indicated with “< ... >”

©Matt Evett 8

BNF Rule

An abstraction (or nonterminal symbol) can
have more than one RHS

<stmt> -> <single_stmt>

 | begin <stmt_list> end

BNF rules are often recursive. Ex: a list

<ident_list> -> ident

 | ident, <ident_list>

©Matt Evett 9

Example Grammar

1. <program> -> <stmts>

2. <stmts> -> <stmt> | <stmt> ; <stmts>

3. <stmt> -> <var> = <expr>

4. <var> -> a | b | c | d

5. <expr> -> <term> + <term> | <term> - <term>

6. <term> -> <var> | const

©Matt Evett 10

An example derivation:

A derivation is a repeated application of rules,
starting with the start symbol (εN)and yielding
a sentence (all terminal symbols).
<program> => <stmts> => <stmt> R1 and R2

 => <var> = <expr> => a = <expr> R3, R4

 => a = <term> + <term> R5a

 => a = <var> + <term> R6a

 => a = b + <term> R4

 => a = b + const R6b

©Matt Evett 11

Derivations

Every string of symbols in a derivation is a
sentential form.

A sentence is a sentential form that has only
terminal symbols.

A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded

A derivation may be leftmost, rightmost or
neither.

©Matt Evett 12

Parse Tree

 <program>

 <stmts>

 <stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b

A parse tree is a hierarchical
rep. of a derivation.
A grammar is ambiguous iff it
generates a sentential form that
has two or more distinct parse
trees

©Matt Evett 13

Grammars & Languages

A language is a set (possibly empty) of
strings.

A grammar, G, generates or defines a
language, L, iff exactly those strings
comprising L can be derived with G.
– All elements of L must be derivable with G.

– There must be no derivations for any strings
not in L.

©Matt Evett 14

Ex: an ambiguous expression
grammar

 <expr>

<expr> <op> <expr>

<expr> <op> <expr>

const - const / const

<expr> -> <expr> <op> <expr> | const
<op> -> / | -

 <expr>

<expr> <op> <expr>

 <expr> <op> <expr>

 const - const / const

©Matt Evett 15

 <expr>

 <expr> - <term>

 <term> <term> / const

 const const

Controlling Ambiguity
Careful tinkering can convert ambiguous
languages into equivalent unambiguous
ones.

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

<expr> => <expr> - <term>
 => <term> - <term>
 => const - <term>
 => const - <term> /
const
 => const - const /
const

©Matt Evett 16

Encoding Precedence

Suppose evaluation of subexpressions of an
arithmatic expression depended on their
location within the parse tree; bottom-up

<assgn> --> <id> = <expr>

<id> --> A | B | C

<expr> --> <expr> + <term>

 | <term>

<term> --> <term> * <factor>

 | <factor>

<factor> --> (<expr>)

 | <id>

Try parsing A = B * C + A

©Matt Evett 17

Encoding Associativity

Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

 <expr>

 <expr> + const

 <expr> + const

 const

©Matt Evett 18

Extended BNF

Extended BNF (just abbreviations):

Optional parts are placed in brackets ([])
– <proc_call> -> ident [(<expr_list>)]

Put alternative parts of RHSs in parentheses
and separate them with vertical bars
– <term> -> <term> (+ | -) const

Put repetitions (0 or more) in braces ({})
– <ident> -> letter {letter | digit}

©Matt Evett 19

Example of EBNF
BNF:

<expr> -> <expr> + <term>
 | <expr> - <term>
 | <term>
<term> -> <term> * <factor>
 | <term> / <factor>
 | <factor>

EBNF:

<expr> -> <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>}

©Matt Evett 20

Syntax Graphs

()

..

Identifier
Type_identifier

,

constant constant

Syntax Graphs - put the terminals in circles or ellipses and put
the nonterminals in rectangles;
connect with lines with arrowheads
EX: Pascal type declarations

©Matt Evett 21

Recursive Descent Parsing
Parsing is the process of tracing or
constructing a parse tree for an input string

 Parsers usually do not analyze lexemes
– that is done by a lexical analyzer, which is

called by the parser

A recursive descent parser traces out a parse
tree in top-down order; it is a top-down parser

 Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

©Matt Evett 22

Building Recursive Descent
Parser

Each grammar rule yields one recursive descent
parsing subprogram.
Example: For the grammar:

 <term> -> <factor> {(* | /) <factor>}

 We could use the following recursive descent
 parsing subprogram.

void term() {
 factor(); /* parse the first factor*/
 while (next_token == ast_code ||
 next_token == slash_code) {
 lexical(); /* get next token */
 factor(); /* parse the next factor */
 }
 }

©Matt Evett 23

Limitations of RDP

Recursive descent parsers, like other top-down
parsers, cannot be built from left-recursive grammars

Imagine the code that would derive from:

<A> --> <A> + <C>

void term() {
 A(); /* parse the lhs argument*/
 if (next_token != plus_code)
 { error(); return; }

 lexical(); /* get next token */
 C(); /* parse the rhs */
 }
 }

©Matt Evett 24

Static Semantics

Static semantics (have nothing to do with
 meaning)
 Categories:

 1. Context-free (e.g. type
 checking), tends to be cumbersome
 2. Noncontext-free (e.g. variables must be
 declared before they are used)

©Matt Evett 25

Attribute Grammars

(Knuth, 1968)
– Cfgs cannot describe all of the syntax of

programming languages
E.g. type info

– Additions to cfgs to carry some semantic info
along through parse trees

 Primary value of AGs:
– Static semantics specification

– Compiler design(static semantics checking)

©Matt Evett 26

Static Semantics

Information that is difficult to encode with
CFG.

Could be encoded using CSG, but then it is
more difficult to generate compilers.

Static because the sentence validity can be
checked at compile-time

©Matt Evett 27

Define Attribute Grammar

Def: An attribute grammar is a cfg G = (S, N,
T, P) with the following additions:
– For each grammar symbol x there is a set A(x)

of attribute values

– Each rule has a set of functions that define
certain attributes of the nonterminals in the
rule

– Each rule has a (possibly empty) set of
predicates to check for attribute consistency

©Matt Evett 28

AG Components

Let X0 -> X1 ... Xn be a rule.

Functions of the form S(X0) = f(A(X1), ...
A(Xn)) define synthesized attributes

Functions of the form I(Xj) = f(A(X0), ... ,
A(Xn)), for i <= j <= n, define inherited
attributes

Initially, there are intrinsic attributes on the
parse tree leaves

©Matt Evett 29

Example AG (1)

Example: expressions of the form id + id
– id's can be either int_type or real_type

– types of the two id's must be the same

– type of the expression must match it's expected
type

BNF:
 <expr> -> <var> + <var>

<var> -> id

Attributes:
– actual_type - synthesized for <var> and <expr>

– expected_type - inherited for <expr>

©Matt Evett 30

Ex: G and its Attributes
The CFG rules may be augmented with “[]”
Syntax rule: <expr> -> <var>[1] + <var>[2]
– Semantic rules:

<var>[1].env ← <expr>.env
<var>[2].env ← <expr>.env
<expr>.actual_type ← <var>[1].actual_type

– Predicate:
<var>[1].actual_type = <var>[2].actual_type
<expr>.expected_type = <expr>.actual_type

Syntax rule: <var> -> id
– Semantic rule:

<var>.actual_type <- lookup (id, <var>.env)

©Matt Evett 31

Computing Attributes

How to compute attributes?
– If all attributes were inherited, the tree could

be decorated in top-down order.

– If all attributes were synthesized, the tree
could be decorated in bottom-up order.

– In most cases, both kinds of attributes are
used, requiring a combination of top-down and
bottom-up decoration.

©Matt Evett 32

Computing Attributes (2)

1. <expr>.env ← inherited from parent

 <expr>.expected_type ← inherited from parent

2. <var>[1].env ← <expr>.env (inherited...)

 <var>[2].env ← <expr>.env

3. <var>[1].actual_type ← lookup (A, <var>[1].env)
(synthesized...)

 <var>[2].actual_type ← lookup (B, <var>[2].env)

 <var>[1].actual_type =? <var>[2].actual_type (a
predicate)

4. <expr>.actual_type ← <var>[1].actual_type

 <expr>.actual_type =? <expr>.expected_type

©Matt Evett 33

Annotate a parse tree

See the board….

©Matt Evett 34

No single widely acceptable notation or
formalism for describing semantics
– Operational semantics

– Axiomatic semantics

– Denotational semantics

Dynamic Semantics

©Matt Evett 35

Operational Semantics
-

Describe the meaning of a program by
executing its statements on a machine, either
simulated or actual. The change in the state
of the machine (memory, registers, etc.)
defines the meaning of the statement

To use operational semantics for a high-level
language, a VM in needed
– A hardware pure interpreter would be too

expensive

– A software pure interpreter also has problems:
 The detailed characteristics of the particular
computer would make actions difficult to

©Matt Evett 36

Idealized VM

A better alternative: A complete computer
simulation

The process:
 1. Build a translator (translates source code to

the machine code of an idealized computer)

 2. Build a simulator for the idealized computer

©Matt Evett 37

Value of Operational
Semantics

Good if used informally

Extremely complex if used formally (e.g.,
VDL)

©Matt Evett 38

Axiomatic Semantics

Based on formal logic (first order predicate
calculus)

Original purpose: formal program verification

Approach: Define axioms or inference rules
for each statement type in the language (to
allow transformations of expressions to other
expressions)

The expressions are called assertions

©Matt Evett 39

Conditions
An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point in execution

An assertion following a statement is a
postcondition

A weakest precondition is the least restrictive
precondition guaranteeing a postcondition

Pre-post form: {P} statement {Q}

An example: a := b + 1 {a > 1}
– One possible precondition: {b > 10}

– Weakest precondition: {b > 0}

©Matt Evett 40

An axiom for assignment statements:

 {Qx->E} x := E {Q}

- The Rule of Consequence:
 {P} S {Q}, P' => P, Q => Q'
 {P'} S {Q'}

Axioms

-

©Matt Evett 41

Sequences

- An inference rule for sequences (the Chaining Rule)
 - For a sequence S1;S2:

{P1} S1 {P2}
{P2} S2 {P3}

 the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}
 {P1} S1; S2 {P3}

©Matt Evett 42

Axiomatic Proof Process

Proving program correctness

Program proof process:
– The postcondition for the whole program is the

desired result. Work back through the
program to the first statement, inferring
preconditions.

– If the precondition on the first statement is the
same as the program spec, the program is
correct.

©Matt Evett 43

Inference Rules for Loops

Very complicated! (Their use, that is.)

Loop invariants

Interested? See 3.6.2.6

©Matt Evett 44

Loops (skip!)

An inference rule for logical pretest loops

 For the loop construct:
 {P} while B do S end {Q}

 the inference rule is:
(I and B) S {I}

{I} while B do S {I and (not B)}

where I is the loop invariant.

©Matt Evett 45

Invariants

Characteristics of the loop invariant, I:
1. P => I (the invariant must be true initially)

2. {I} B {I} (evaluation of the Boolean must not

 change the validity of I)

3. {I and B} S {I} (I is not changed by executing
the body of the loop)

4. (I and (not B)) => Q (if I is true and B is
false, Q is implied)

5. The loop terminates (this can be difficult to
prove)

©Matt Evett 46

Invariants (cont.)

- The loop invariant I is a weakened version of the
 loop postcondition, and it is also a precondition.

- I must be weak enough to be satisfied prior to the
 beginning of the loop, but when combined with the
 loop exit condition, it must be strong enough to
 force the truth of the postcondition

©Matt Evett 47

Developing Axiomatic
Semantics

Evaluation of axiomatic semantics:

Developing axioms or inference rules for all of
the statements in a language is difficult

It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs, but it is not as useful for language
users and compiler writers

©Matt Evett 48

Denotational Semantics

Based on recursive function theory

The most abstract semantics description
method

Originally developed by Scott and Strachey
(1970)

©Matt Evett 49

Denotational Semantics (2)
The process of building a denotational spec
for a language:
 1. Define a mathematical object for each

language entity

 2. Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

The meaning of language constructs are
defined by only the values of the program's
variables

Meaning is assigned to grammar rules
containing only a terminal as the RHS.

©Matt Evett 50

Denotational vs. Operational
The difference between denotational and
operational semantics:
– In operational semantics, the state changes

are defined by coded algorithms; in
denotational semantics, they are defined by
rigorous mathematical functions

The state of a program is the values of all its
current variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

Let VARMAP be a function that, when given a
variable name and a state, returns the current
value of the variable

 VARMAP(ij, s) = vj

©Matt Evett 51

D.S. for Numbers

1. Decimal Numbers

 <dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 | <dec_num> (0 | 1 | 2 | 3 | 4 |
 5 | 6 | 7 | 8 | 9)

 Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9
 Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)
 Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1
 …
 Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

©Matt Evett 52

D.S. of Numeric Expressions
Me(<expr>, s) ∆=
 case <expr> of
 <dec_num> => Mdec(<dec_num>, s)
 <var> =>
 if VARMAP(<var>, s) = undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) = undef
 OR Me(<binary_expr>.<right_expr>, s) =
 undef)
 then error

else
 if (<binary_expr>.<operator> = ë+í then
 Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else Me(<binary_expr>.<left_expr>, s) *
 Me(<binary_expr>.<right_expr>, s)

©Matt Evett 53

D.S. Assignments & Loops
Ma(x := E, s) ∆=
 if Me(E, s) = error
 then error
 else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>},
 where for j = 1, 2, ..., n,
 vj’ = VARMAP(ij, s) if ij <> x
 = Me(E, s) if i j = x

4 Logical Pretest Loops

 Ml(while B do L, s) ∆=
 if Mb(B, s) = undef
 then error
 else if Mb(B, s) = false
 then s
 else if Msl(L, s) = error
 then error
 else Ml(while B do L, Msl(L, s))

©Matt Evett 54

Loops

- The meaning of the loop is the value of the
 program variables after the statements in the loop
 have been executed the prescribed number of
 times, assuming there have been no errors

- In essence, the loop has been converted from
 iteration to recursion, where the recursive control
 is mathematically defined by other recursive state
 mapping functions

 - Recursion, when compared to iteration, is easier
 to describe with mathematical rigor

©Matt Evett 55

Use of D.S.

Evaluation of denotational semantics:

- Can be used to prove the correctness of
programs

- Provides a rigorous way to think about
programs

- Can be an aid to language design

- Has been used in compiler generation
systems

