
\qquad
\qquad
\qquad
\qquad
\qquad

Syntax and Semantics

\qquad

- Syntax - the form or structure of the expressions, statements, and program units
- Semantics - the meaning of the expressions, \qquad statements, and program units
- Who must use language definitions? \qquad
- Other language designers
- Implementors \qquad
- Programmers (the users of the language)

Syntax Definitions

- A sentence is a string of characters over
\qquad some alphabet
- A language is a set of sentences
- A lexeme is the lowest level syntactic unit of a language (e.g., ${ }^{*}$, sum, begin) \qquad
- A token is a category of lexemes (e.g., identifier) \qquad
\qquad

Using Formal Syntax

- Two general uses of formally defined
\qquad languages:
- Recognizers - used in compilers. Given a \qquad syntax and a string, is the string sentence of the language?
- Generators - what we'll study. Given a syntax, generate legal sentences.

Formal Language Description

\qquad

- Context-Free Grammars
\qquad
- Developed by Noam Chomsky in the mid-50s
- Language generators, meant to describe the
\qquad syntax of natural languages
- Defined a class of languages called context- \qquad free languages

■ Backus Normal Form (1959) \qquad

- Invented by John Backus to describe Algol 58
- BNF is equivalent to context-free grammars \qquad
- A metalanguage for computer languages
- A language used describe other languages. ${ }^{5}$

BNF

Abstractions are used to represent classes of
\qquad syntactic structures

- Act like syntactic variables (also called nonterminal symbols)
<while_stmt> -> while <logic_expr> do <stmt>

■ This is a rule describing the structure of a while statement \qquad

BNF Grammar

- A grammar is a finite, nonempty set of rules (R), plus sets of terminal (T) and nonterminal (N) symbols.
- A rule has a left-hand side (LHS) and a righthandside (RHS)
- The LH is a single terminal symbol
- The RHS consisting of terminal and nonterminal symbols
- The sets of terminals (T) and nonterminals (N) are mutually exclusive.
■ Nonterminals are indicated with " $<$... >"

BNF Rule

- An abstraction (or nonterminal symbol) can
\qquad have more than one RHS
<stmt> -> <single_stmt>
| begin <stmt_list> end

BNF rules are often recursive. Ex: a list
<ident_list> -> ident
| ident, <ident list>

Example Grammar

1. <program> -> <stmts>
2. <stmts> -> <stmt> | <stmt> ; <stmts>
3. <stmt> -> <var> = <expr>
4. <var> -> a|b|c|d
5. <expr> -> <term> + <term> | <term> - <term>
6. <term> -> <var> | const \qquad
\qquad

An example derivation:

■ A derivation is a repeated application of rules, starting with the start symbol ($\varepsilon \mathrm{N}$) and yielding a sentence (all terminal symbols).
<program> => <stmts> => <stmt> R1 and R2
=> <var> = <expr> => a = <expr> R3, R4
=> a = <term> + <term> R5a
=> a = <var> + <term> R6a
=> $\mathrm{a}=\mathrm{b}+$ <term> R4
$\Rightarrow \mathrm{a}=\mathrm{b}+$ const $R 6 \mathrm{~b}$

Derivations

- Every string of symbols in a derivation is a sentential form.
- A sentence is a sentential form that has only terminal symbols.
- A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded \qquad
■ A derivation may be leftmost, rightmost or neither.

Parse Tree

\qquad

A parse tree is a hierarchical rep. of a derivation.
A grammar is ambiguous iff it generates a sentential form that has two or more distinct parse trees

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Grammars \& Languages

■ A language is a set (possibly empty) of strings.
■ A grammar, G, generates or defines a language, L, iff exactly those strings comprising L can be derived with G.

- All elements of L must be derivable with G.
- There must be no derivations for any strings \qquad not in L.

Ex: an ambiguous expression grammar

Controlling Ambiguity

■ Careful tinkering can convert ambiguous \qquad languages into equivalent unambiguous ones.
■ An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

Encoding Precedence

- Suppose evaluation of subexpressions of an arithmatic expression depended on their location within the parse tree; bottom-up \qquad
<assgn> --> <id> = <expr>
<id> --> A | B | C
<expr> --> <expr> + <term>
| <term>
<term> --> <term> * <factor>
| <factor>
<factor> --> (<expr>)
| <id>

Encoding Associativity

Operator associativity can also be indicated by a grammar
 <expr> -> <expr> + <expr> I const (ambiguous)
 <expr> -> <expr> + const I const (unambiguous)

©Matt Evett

Extended BNF

Extended BNF (just abbreviations):
Optional parts are placed in brackets ([])

- <proc_call> -> ident [(<expr_list>)]
- Put alternative parts of RHSs in parentheses and separate them with vertical bars
- <term> -> <term> (+|-) const

■ Put repetitions (0 or more) in braces (\{\}) \qquad

- <ident> -> letter \{letter | digit\}
\qquad

Example of EBNF

- BNF: \qquad
- <expr> -> <expr> + <term>
- \mid <expr> - <term>
| <term>
- <term> -> <term> * <factor>
- | <term> / <factor>
| <factor>
- EBNF:
- <expr> -> <term> $\{(+\mid-)<t e r m>\}$
- <term> -> <factor> \{(* | /) <factor>\}

Syntax Graphs

Syntax Graphs - put the terminals in circles or ellipses and put
\qquad the nonterminals in rectangles;
connect with lines with arro wheads
EX: Pascal type dec larations
\qquad
\qquad

\qquad
\qquad
©Matt Evett

Recursive Descent Parsing

\qquad

- Parsing is the process of tracing or \qquad constructing a parse tree for an input string
■ Parsers usually do not analyze lexemes \qquad
- that is done by a lexical analyzer, which is \qquad
- A recursive descent parser traces out a parse tree in top-down order; it is a top-down parser
- Each nonterminal in the grammar has a
\qquad subprogram associated with it; the subprogram parses all sentential forms that
\qquad the nonterminal can generate

Building Recursive Descent Parser

Each grammar rule yields one recursive descent parsing subprogram.

- Example: For the grammar:

$$
\text { <term> -> <factor> f(* | /) <factor>\} }
$$

We could use the following recursive descent parsing subprogram.
void term() \{
factor(); /* parse the first factor*/
while (next_token $==$ ast_code $\|$
next_token $=$ slash_code) 1
factor(); /* parse the next factor */ ,

Mart Evett

Limitations of RDP

- Recursive descent parsers, like other top-down parsers, cannot be built from left-recursive grammars
- Imagine the code that would derive from:
<A> --> <A> + <C>
void term() 1
A(); /* parse the 1hs argument*/
if (next_token != plus_code)
(error(); return; \}
lexical(); /* get next token */
C() ; /* parse the rhs */
,

Static Semantics

Static semantics (have nothing to do with
meaning)

1. Context-free (e.g. type
checking), tends to be cumbersome
2. Noncontext-free (e.g. variables must be
declared before they are used)

Attribute Grammars

- (Knuth, 1968)
- Cfgs cannot describe all of the syntax of programming languages
- E.g. type info
- Additions to cfgs to carry some semantic info along through parse trees
- Primary value of AGs:
- Static semantics specification
- Compiler design(static semantics checking)

Static Semantics

- Information that is difficult to encode with CFG.
Could be encoded using CSG, but then it is more difficult to generate compilers.
- Static because the sentence validity can be checked at compile-time

Define Attribute Grammar

Def: An attribute grammar is a cfg $G=(\mathrm{S}, \mathrm{N}$,
T, P) with the following additions:

- For each grammar symbol x there is a $\operatorname{set} A(x)$ of attribute values
- Each rule has a set of functions that define certain attributes of the nonterminals in the rule
- Each rule has a (possibly empty) set of predicates to check for attribute consistency

AG Components

Let $\mathrm{X0} 0$-> X 1 ... Xn be a rule.

- Functions of the form $S(X 0)=f(A(X 1), \ldots$ $A(X n))$ define synthesized attributes
- Functions of the form $I\left(\mathrm{X}_{\mathrm{j}}\right)=\mathrm{f}(\mathrm{A}(\mathrm{XO}), \ldots$, $\mathrm{A}(\mathrm{Xn})$), for $\mathrm{i}<=\mathrm{j}<=\mathrm{n}$, define inherited attributes
- Initially, there are intrinsic attributes on the parse tree leaves

Example AG (1)

- Example: expressions of the form id +id \qquad
- id's can be either int_type or real_type
- types of the two id's must be the same
- type of the expression must match it's expected type
- BNF:
<expr> -> <var> + <var>
<var> -> id
- Attributes:
- actual_type - synthesized for <var> and <expr>
- expected_type - inherititeld for <expr>

Ex: G and its Attributes

- The CFG rules may be augmented with " []"
- Syntax rule: <expr> -> <var>[1] + <var>[2]
- Semantic rules:
- <var>[1].env \leftarrow <expr>. env
- <var>[2].env \leftarrow <expr>.env
- <expr>. actual_type \leftarrow <var>[1] .actual_type
- Predicate:
- <var>[1] .actual_type = <var>[2] .actual_type
- <expr>.expected_type = <expr>. actual_type \qquad
- Syntax rule: <var> -> id
- Semantic rule:
. <var>. actual_type <-lookup (id, <var>. env)

Computing Attributes

- How to compute attributes?
- If all attributes were inherited, the tree could be decorated in top-down order. \qquad
- If all attributes were synthesized, the tree could be decorated in bottom-up order. \qquad
- In most cases, both kinds of attributes are used, requiring a combination of top-down and bottom-up decoration.

Computing Attributes (2)

1. <expr>.env \leftarrow inherited from parent <expr>.expected_type \leftarrow inherited from parent
2. <var>[1].env \leftarrow <expr>.env (inherited...) <var>[2].env \leftarrow <expr>.env
3. <var>[1].actual_type \leftarrow lookup (A, <var>[1].env) (synthesized...) <var>[2].actual_type \leftarrow lookup (B, <var>[2].env) <var>[1].actual_type $=$? <var>[2].actual_type (a predicate)
4. <expr>.actual_type $\leftarrow<$ var>[1].actual_type <expr>.actual_type =? <expr>.expected_type ©Matt Evett

Annotate a parse tree

■ See the board....
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dynamic Semantics

\qquad

■ No single widely acceptable notation or
\qquad formalism for describing semantics

- Operational semantics
- Axiomatic semantics
- Denotational semantics

Operational Semantics

\qquad

Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The change in the state \qquad of the machine (memory, registers, etc.) defines the meaning of the statement \qquad

- To use operational semantics for a high-level language, a VM in needed
- A hardware pure interpreter would be too expensive
- A software pure interpreter also has problems:
- The detailed characteristics of the particular computer would make actions difficult to

Idealized VM

- A better alternative: A complete computer simulation
- The process:

1. Build a translator (translates source code to the machine code of an idealized computer)
2. Build a simulator for the idealized computer

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Axiomatic Semantics

\qquad

Based on formal logic (first order predicate \qquad calculus)

- Original purpose: formal program verification
\qquad
Approach: Define axioms or inference rules for each statement type in the language (to \qquad allow transformations of expressions to other expressions) \qquad
The expressions are called assertions

Conditions

An assertion before a statement (a precondition) states the relationships and
\qquad constraints among variables that are true at that point in execution

- An assertion following a statement is a postcondition
- A weakest precondition is the least restrictive precondition guaranteeing a postcondition \qquad
- Pre-post form: $\{P\}$ statement $\{Q\}$
- An example: $\mathrm{a}:=\mathrm{b}+1\{\mathrm{a}>1\}$
\qquad
- One possible precondition: $\{b>10\}$
- Weakest precondition: $\{b>0\}$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sequences

\qquad
\qquad

- - An inference rule for sequences (the Chaining Rule)

For a sequence S 1 ;S2:
\{P1\} S1 \{P2\}
\{P2\} S2 $\{\mathrm{P} 3\}$ \qquad
the inference rule is: \qquad
\{P1\} S1 $\{\mathrm{P} 2\},\{\mathrm{P} 2\}$ S2 $\{\mathrm{P} 3\}$ \qquad $\{\mathrm{P} 1\}$ S1; S2 $\{\mathrm{P} 3\}$

Axiomatic Proof Process

\qquad

Proving program correctness

- Program proof process:
- The postcondition for the whole program is the desired result. Work back through the program to the first statement, inferring preconditions.
- If the precondition on the first statement is the \qquad same as the program spec, the program is correct.

\qquad
\qquad

Loops (skip!)

\qquad
\qquad

- An inference rule for logical pretest loops
- For the loop construct:
\qquad $\{P\}$ while B do S end $\{Q\}$
\qquad
■ the inference rule is:
\qquad
$\{1\}$ while B do $S\{1$ and (not $B)\}$
- where / is the loop invariant.

Invariants

\qquad

Characteristics of the loop invariant, I:
\qquad

1. $P=>$ I (the invariant must be true initially)
2. $\{1\} B\{1\}$ (evaluation of the Boolean must not change the validity of I)
3. $\{I$ and $B\} S\{1\}$ (I is not changed by executing the body of the loop)
4. $(I$ and $(\operatorname{not} B))=>Q \quad$ (if I is true and B is false, Q is implied)
5. The loop terminates (this can be difficult to prove)

\qquad
\qquad

Developing Axiomatic Semantics

- Evaluation of axiomatic semantics:
\qquad
\qquad
- Developing axioms or inference rules for all of
\qquad
■ It is a good tool for correctness proofs, and an
\qquad programs, but it is not as useful for language
\qquad

Denotational Semantics

Based on recursive function theory
\qquad

- The most abstract semantics description method \qquad
■ Originally developed by Scott and Strachey (1970) \qquad
\qquad
\qquad
\qquad

Denotational Semantics (2)

\qquad
The process of building a denotational spec \qquad for a language:

1. Define a mathematical object for each language entity
2. Define a function that maps instances of the language entities onto instances of the corresponding mathematical objects

- The meaning of language constructs are
\qquad
\qquad defined by only the values of the program's variables
- Meaning is assigned to grammar rules containing only a terminal as the RHS.

Denotational vs. Operational

\qquad

- The difference between denotational and operational semantics: \qquad
- In operational semantics, the state changes are defined by coded algorithms; in denotational semantics, they are defined by rigorous mathematical functions
- The state of a program is the values of all its current variables

$$
s=\{<i 1, v 1>,<i 2, v 2>, \ldots,<i n, v n>\}
$$

Let VARMAP be a function that, when given a variable name and a state, returns the current value of the variable $\operatorname{VARMAP}(\mathrm{ij}, \mathrm{s}) \xlongequal{=}=\mathrm{vj}$

D.S. for Numbers

1. Decimal Numbers
<dec_num> \rightarrow 0111213141516171819
l <dec_num> (011121314|
516171819)

$M_{\text {dec }}\left(O^{\prime}\right)=0, M_{\text {dec }}\left('^{\prime} 1\right)=1, \ldots, M_{\text {dec }}\left('^{\prime} 9^{\prime}\right)=9$

$M_{\text {dec }}\left(<d e c _\right.$num $\left.>~ ' 1 '\right)=10$ * $M_{\text {dec }}$ (<dec_num>) +1
$\dddot{M}_{\text {dec }}\left(\right.$ <dec_num> '9') $=10^{*} M_{\text {dec }}($ <dec_num>) +9

D.S. of Numeric Expressions

\qquad
M_{e} (<expr>, s) $\Delta=$
ase <expr> of
<dec_num> => $M_{\text {dec }}$ (<dec_num>, s)
if $\operatorname{VARMAP}(<$ var $>, s)=$ und
then error
else VARMAP(<var>, s)
<binary_expr> =>
if (M_{e} (<binary_expr>.<left_expr>, s) = unde OR M_{e} (<binary_expr>.<right_expr>, s) = undef)
then error
if (<binary_expr>.<operator> = ë+í then
M_{e} <binary_expr>.<left_expr>, s) +
M_{e} (<binary_expr>.<right_expr>, s)
eise M_{e} (<binary_expr>.<left_expr>, s) *
M_{e} (<binary_expr>.<right_expr>, s)

D.S. Assignments \& Loops

\qquad
$\mathrm{M}_{\mathrm{a}}(\mathrm{x}:=\mathrm{E}, \mathrm{s}) \Delta=$ M M (E, S) = error
then error
else $s^{\prime}=\left\{\left\langle i_{1}{ }^{\prime}, v_{1}{ }^{\prime}\right\rangle,\left\langle i_{2}{ }^{\prime}, v_{2}{ }^{\prime}\right\rangle, \ldots,\left\langle i_{n}{ }^{\prime}, v_{n}{ }^{\prime}\right\rangle\right\}$,
where for $\mathrm{j}=1,2, \ldots, \mathrm{n}$,
$v_{j}{ }^{\prime}=\operatorname{VARMAP}\left(\mathrm{i}_{\mathrm{j}}, \mathrm{s}\right)$ if $\mathrm{i}_{j} \diamond \mathrm{x}$
$=M_{e}(E, s)$ if $i_{i}=x$
\qquad
\qquad
4 Logical Pretest Loops
M_{1} (while B do L, s) $\Delta=$
if $\mathrm{Mb}(\mathrm{B}, \mathrm{s})=$ undef
then error
else if $M_{b}(B, s)=$ false
then s
else if $M_{s(1)}(L, s)=$ error
then error
else $M_{l}\left(\right.$ while B do $\left.L, M_{s 1}(L, s)\right)$

CMatt Evett

- The meaning of the loop is the value of the
program variables after the statements in the loop
have been executed the prescribed number of
times, assuming there have been no errors
- In essence, the loop has been converted from
iteration to recursion, where the recursive control
is mathematically defined by other recursive state
mapping functions
- Recursion, when compared to iteration, is easier
to describe with mathematical rigor

Use of D.S.

- Evaluation of denotational semantics:
- Can be used to prove the correctness of programs
- Provides a rigorous way to think about programs
- Can be an aid to language design
- Has been used in compiler generation systems

