

Recursive void Methods

- A recursive method is a method that includes a call to itself
- Recursion is based on the general problem solving technique of breaking down a task into subtasks
- In particular, recursion can be used whenever one subtask is a smaller version of the original task

Vertical Numbers

- The (static) recursive method writeVertical takes one (nonnegative) int argument, and writes that int with the digits going down the screen one per line
- Note: Recursive methods need not be static
- This task may be broken down into the following two subtasks
- Simple case: If $n<10$, then write the number n to the - Screen
- Recursive Case: If $n>=10$, then do two subtasks:
- Output all the digits except the last digit
- Output the last digit

Vertical Numbers

- Given the argument 1234, the output of the first subtask would be:

1
2
3

- The output of the second part would be: 4

Vertical Numbers

- The decomposition of tasks into subtasks can be used to derive the method definition:
- Subtask 1 is a smaller version of the original task, so it can be implemented with a recursive call
- Subtask 2 is just the simple case (no need for recursion!)

Algorithm for Vertical Numbers

- Given parameter n :
if ($\mathrm{n}<10$)
System.out.println(n) ;
else
\{
writeVertical
(the number n with the last digit removed); System.out.println(the last digit of n);
\}
- Note: $n / 10$ is the number n with the last digit removed, and $n \% n$ is the last digit of n
© 2006 Pearson Addison-Westey. All rights reserved

Tracing a Recursive Call

- Recursive methods are processed in the same way as any method call writeVertical (123);
- When this call is executed, the argument 123 is substituted for the parameter n, and the body of the method is executed
- Since 123 is not less than 10, the else part is executed

Refresher on Function/Method Calls

- Calling functions "suspend" until the called function returns.
- How does "return" know where to go?

```
public static void hoo(int arg)
    System.out.println(arg+2);
    return; // Don't need explicit "return", but to make a point
public
    public static void boo(int arg) {
    return; // Don't need explicit "return", but to make a point
}
public static void yoo()
    int x-10
    hoo(x);
    System.out.println(x)
}
@206 Pearson Addison-Wesley. Al rghth reseved

A Recursive void Method (Part 2 of 2)
```

Display II., A Recursive void method (continued)

```
```

 System.out.println(n);
    ```
        System.out.println(n);
    else //n is two or more digits long
    else //n is two or more digits long
        writevertical(n/10);
        writevertical(n/10);
        System.out.println(n%10);
        System.out.println(n%10);
    }
```

 }
    ```
sample dialocue


02006 Pearson Addison-Westey All inght resene

\section*{Tracing a Recursive Call}
- The else part begins with the method call: writeVertical ( \(\mathrm{n} / 10\) ) ;
- Substituting \(n\) equal to 123 produces: writeVertical (123/10);
- Which evaluates to
writeVertical(12);
- At this point, the current method computation is placed on hold, and the recursive call writeVertical is executed with the parameter 12
- When the recursive call is finished, the execution of the suspended computation will return and continue from the point above

\section*{Evaluating writeVertical(123)}
- Calling a function recursively is just like calling a non-recursive function
- The current invocation of writeVertical "suspends" until the called invocation returns
```

if (123 < 10)
Systen.out.println(123):
else //n is two or more digits long:
{ Computation will stop here until
writeVertical(123/10);* the recursive call returns.
System.out.println(123%10);
3

```
© 2006 Pearson Addison-Wesley. Al rights reserved


\section*{Execution of writeVertical (12)}


\section*{Tracing a Recursive Call}
- So this second computation of writeVertical is suspended, leaving two computations waiting to resume, as the computer begins to execute another recursive call
- When this recursive call is finished, the execution of the second suspended computation will return and continue from the point above
- 2006 Pearson Addison-Westey. All right reserved

\section*{Tracing a Recursive Call}
write Vertical(1);
- When this call is executed, the argument 1 is substituted for the parameter \(n\), and the body of the method is executed
- Since 1 is less than 10 , the if-else statement Boolean expression is finally true
- The output statement writes the argument 1 to the screen, and the method ends without making another recursive call
- Note that this is the stopping case

\section*{Tracing a Recursive Call}
- When the call writeVertical (1) ends, the suspended computation that was waiting for it to end (the one that was initiated by the call writeVertical (12)) resumes execution where it left off
- It outputs the value \(12 \% 10\), which is 2
- This ends the method
- Now the first suspended computation can resume execution


Completion of writeVertical (123)
```

if (123 < 10)
{
System.out.println(123);
}}\mathrm{ else //n is two or more digits long
else //n is two or more digit
writeVertical(123/10);
}

```

\section*{A Closer Look at Recursion}
- When the computer encounters a recursive call, it must temporarily suspend its execution of a method
- It does this because it must know the result of the recursive call before it can proceed
- It saves all the information it needs to continue the computation later on, when it returns from the recursive call
- Ultimately, this entire process terminates when one of the recursive calls does not depend upon recursion to return

\section*{Tracing a Recursive Call}
- The first suspended method was the one that was initiated by the call writeVertical (123)
- It resumes execution where it left off
- It outputs the value \(123 \% 10\), which is 3
- The execution of the original method call ends
- As a result, the digits 1,2 , and 3 have been written to the screen one per line, in that order

\section*{A Closer Look at Recursion}
- The computer keeps track of recursive calls as follows:
- When a method is called, the computer plugs in the arguments for the parameter(s), and starts executing the code
- If it encounters a recursive call, it temporarily stops its computation
- When the recursive call is completed, the computer returns to finish the outer computation

\section*{General Form of a Recursive Method Definition}
- The general outline of a successful recursive method definition is as follows:
- One or more cases that include one or more recursive calls to the method being defined
- These recursive calls should solve "smaller" versions of the task performed by the method being defined
- One or more cases that include no recursive calls: base cases or stopping cases

\section*{Pitfall: Infinite Recursion}
- In the writeVertical example, the series of recursive calls eventually reached a call of the method that did not involve recursion (a stopping/base case)
- If, instead, every recursive call had produced another recursive call, then a call to that method would, in theory, run forever

> - This is called infinite recursion
- In practice, such a method runs until the computer runs out of resources, and the program terminates abnormally
© 2006 Pearson Addison-Westey. Al rights resenered

\section*{Pitfall: Infinite Recursion}
- An alternative version of writeVertical
- Note: No stopping case!
public static void
newWriteVertical (int \(n\) )
\(\{\)
newWriteVertical(n/10);
System.out.println(n\%10);
\}
-2006 Pearson Addison-Westey. All rights reserved

\section*{Pitfall: Infinite Recursion}
- Calling newWriteVertical (0) causes that execution to stop to execute the recursive call newWriteVertical (0/10)
- Which is equivalent to newWriteVertical (0) - . . . And so on, forever!
- Since the definition of newWriteVertical has no stopping case, the process will proceed forever (or until the computer runs out of resources)

\section*{Stacks for Recursion}
- To get information out of the stack, the top paper can be read, but only the top paper
- To get more information, the top paper can be thrown away, and then the new top paper can be read, and so on
- Since the last sheet put on the stack is the first sheet taken off the stack, a stack is called a last-in/first-out memory structure (LIFO)


\section*{Stacks for Recursion}
- A new sheet of paper is used for the recursive call
- The computer writes a second copy of the method, plugs in the arguments, and starts to execute its body
- When this copy gets to a recursive call, its information is saved on the stack also, and a new sheet of paper is used for the new recursive call

\section*{Stacks for Recursion}
- After the suspended computation ends, the computer discards its corresponding sheet of paper (the one on top)
- The suspended computation that is below it on the stack now becomes the computation on top of the stack
- This process continues until the computation on the bottom sheet is completed

\section*{Pitfall: Stack Overflow}
- There is always some limit to the size of the stack
- If there is a long chain in which a method makes a call to itself, and that call makes another recursive call, . . . , and so forth, there will be many suspended computations placed on the stack
- If there are too many, then the stack will attempt to grow beyond its limit, resulting in an error condition known as a stack overflow
- A common cause of stack overflow is infinite recursion

\section*{Recursion Versus Iteration}
- Recursion is not absolutely necessary
- Any task that can be done using recursion can also be done in a nonrecursive manner
- A nonrecursive version of a method is called an iterative version
- An iteratively written method will typically use loops of some sort in place of recursion
- A recursively written method can be simpler, but will usually run slower and use more storage than an equivalent iterative version
© 2006 Pearson Addison-Westey. Al rights reserved

Iterative version of writeVertical
Display 11.2 Iterative Version of the Method in Display y.1
public static void writevertical(int \(n\) )
int nsTens \(=1\);
        while (leftendPiece \(>\);
        \{
            leftEndPiece \(=\) leftEndPiece/10;
nsTens \(=\) nsTens \(* 10 ;\)
        3 \({ }^{\text {ns }}\)
        /nsTens is a power of ten that has the same numbe
\(/ / 0 \mathrm{f}\) digits as n . For example, if \(n\) is 2345 , then
        //of digits as \(n\).
//nsTens is 1009 .
        for (int powerof10 \(=\) nsTens;

        System.out.println(n/powerof19);
        System.out.print
\(n=n\) nopowerof19;
    , \({ }^{3}\)
© 2006 Pearson Addison-Westey. All right reserve
\(\qquad\)

\section*{Another Powers Method}
- The method pow from the Math class computes powers
- It takes two arguments of type double and returns a value of type double
- The recursive method power takes two arguments of type int and returns a value of type int
- The definition of power is based on the following formula: \(x^{n}\) is equal to \(x^{n-1 ~ *} x\)
```

The Recursive Method power
(Part 1 of 2)
2 public class RecursionDemo2
{
System.out.println("3 to the power " + n
+ " is " + power(3, n));
}

```
© 2006 Pearson Addison-Westey. Al rights resereed
    power ( \(\mathbf{x}, \mathrm{n}\) ) for \(\mathrm{n}>0\) should be the
    same as
- When \(\mathrm{n}=0\), then power ( \(\mathrm{x}, \mathrm{n}\) )
should return 1
    - This is the stopping case

\section*{Another Powers Method}
- In terms of Java, the value returned by power (x, n) for \(n>0\) should be the same as
```

 power(x, n-1) * x
    ```
- When \(\mathrm{n}=0\), then power ( \(\mathrm{x}, \mathrm{n}\) ) should return 1
- This is the stopping case


\section*{Another way to think of the recursion}
- Calculating power( 2,3 )
\(-\operatorname{Power}(2,3)\) is power \((2,2)^{*} 2\)
- Power(2,2) is power(2,1)*2
- Power(2,1) is power(2,0)*2
\(-\operatorname{Power}(2,0)\) is 1 - The Base Case

Q2006 Pearson Addison-Westey. All right resene

Evaluating the Recursive Method Call power \((2,3)\)
Display 1.4 Evaluating the Recursive method Call power \((2,3)\)


How the final value is computed:


2006 Pearson Addison-Westey. All ights reserved

\section*{Thinking Recursively}
- If a problem lends itself to recursion, it is more important to think of it in recursive terms, rather than concentrating on the stack and the suspended computations
power ( \(\mathrm{x}, \mathrm{n}\) ) returns power ( \(\mathrm{x}, \mathrm{n}-1\) ) * x
- In the case of methods that return a value, there are three properties that must be satisfied, as follows:

\section*{Recursive Design Techniques}
- The same rules can be applied to a recursive void method:
1. There is no infinite recursion
2. Each stopping case performs the correct action for that case
3. For each of the cases that involve recursion: if all recursive calls perform their actions correctly, then the entire case performs correctly
1. This is the tricky part for newbies: "how can I "assume" the recursive calls work!!!??
© 2006 Pearson Addison-Westey. All rights reseeve

\section*{Binary Search}
- Binary search uses a recursive method to search an array to find a specified value
- The array must be a sorted array: \(a[0] \leq a[1] \leq a[2] \leq . . \leq a[f i n a l\) Index \(]\)
- If the value is found, its index is returned
- If the value is not found, -1 is returned
- Note: Each execution of the recursive method reduces the search space by about a half

Q 2006 Pearson Addison-Westey. Al rights reserved

\section*{Binary Search}
- An algorithm to solve this task looks at the middle of the array or array segment first
- If the value looked for is smaller than the value in the middle of the array
- Then the second half of the array or array segment can be ignored
- This strategy is then applied to the first half of the array or array segment

Display 1.5 Pseudocode for Binary Search *
Alcorithm to search a[first] throuch a[last]
Precondition
a[first] \(<=\mathrm{a}[\) first +1\(]<=\mathrm{a}[\) first +2\(]<=\ldots<=\mathrm{a}[\) last \(]\)
```

To locate the value key:

```
    if (first > last) //A stopping case
    \({ }_{\text {else }}{ }^{\text {return }-1}\)
    felse
        mid \(=\) approximate midpoint between first and last
        if (key \(=\mathrm{a}\) [mid]) \(/ / \mathrm{A}\) stopping case
        if (key \(=\) atmid)
        else if key \(<a[m i d] / / A\) case with recursion
return the result of searching a[first] through \(a[\) mid - 1];
        return the result of searching a[first] through o[mid - 1\(]\);
else if key \(>a[\) midd \(/ / \mathrm{A}\) case with recursion
        set
return the result of searching \(a[\) mid +1\(]\) through a[last];
    \}
Q2000 Pearson Adadison-Westey.aninghts reserve

\section*{Execution of the Method search} (Part 1 of 2)

\section*{public class Binarysearch}

Searches the array a for key. If key is not in the array segment, then - 1 is returned. Otherwise returns an index in the segment such that key \(=a[\) [index]
 public static int search(int[] \(a\), int first, int last, int key)
int result = 0; //to keep the compiler happy.
if (first > last)
result \(=-1 ;\)
\({ }_{i}{ }^{\text {else }}\)
int mid \(=(\) first + last \() / 2\)
if (key \(==a[m i d]\) )
result = mid;


result \(=\operatorname{search}(a\), mid +1 , last, key \()\);
return result;
+

Display 1.7 Execution of the method search \%

© 2006 Pearson Addison-Westey. Al rights resenved


\section*{Checking the search Method}
2. Each stopping case performs the correct action for that case
- If first > last, there are no array elements between a [first] and a [last], so key is not in this segment of the array, and result is correctly set to -1
- If key \(==\mathrm{a}\) [mid], result is correctly set to mid

\section*{Checking the search Method}
1. There is no infinite recursion
- On each recursive call, the value of first is increased, or the value of last is decreased
- If the chain of recursive calls does not end in some other way, then eventually the method will be called with first larger than last

\section*{Checking the search Method}
3. For each of the cases that involve recursion, if all recursive calls perform their actions correctly, then the entire case performs correctly
- If key < a [mid], then key must be one of the elements a [first] through a [mid-1], or it is not in the array
- The method should then search only those elements, which it does
- The recursive call is correct, therefore the entire action is correct

\section*{Checking the search Method}
- If key \(>\) a [mid], then key must be one of the elements a [mid+1] through a [last], or it is not in the array
- The method should then search only those elements, which it does
- The recursive call is correct, therefore the entire action is correct
The method search passes all three tests:
Therefore, it is a good recursive method definition

\section*{Efficiency of Binary Search}
- The binary search algorithm is extremely fast compared to an algorithm that tries all array elements in order
- About half the array is eliminated from consideration right at the start
- Then a quarter of the array, then an eighth of the array, and so forth
```

