Database Principles Definitions regarding Normalization

functionally dependent (\rightarrow , *fd*) A and B are non-empty sets of attributes in relation R.

 $A \rightarrow B$ iff each value of A has associated with it exactly one value of B.

fully functionally dependent (ffd) A and B are non-empty sets of attributes in R.

B is fully functionally dependent on A if
A → B, but
B is not functionally dependent on any proper subset of A

transitively dependent A, B and C are non-empty attributes of R such that $A \rightarrow B$ and $B \rightarrow C$ then C is transitively dependent on A via B (provided A is not functionally dependent on B or C)

2NF – simple definition A relation that is in 1NF and every non-primary key attribute is fully functional dependent on the primary key

2NF – general definition A relation that is in 1NF, and every non-candidate key attribute is ffd on any candidate key.

3NF – simple definition A relation that is in 2NF and no non-primary key attribute is transitively dependent on the primary key.

3NF – general definition

A relation that is in 2NF and in which no non-candidate key attribute is transitively dependent on any candidate key.

BCNF

A relation R is in BCNF if whenever a non-trivial $X \rightarrow A$ exists, then X is a superkey.

BCNF – alternate definition

A relation R is in BCNF if and only every determinant is a candidate key.

Decomposition of relation R is a set {R1, R2, ..., Rn} such that each Ri ⊆ R, and union over all Ri equals R. (i.e., same as "attribute preserving decomposition") Attribute preserving decomposition of universal table R = {R1, R2, ..., Rn} Every attribute of R appears in at least one of the relations Ri That is, $R1 \cup R2 \cup ... \cup Rn = R$

Dependency preserving decomposition of universal table R = { R1, R2, ... Rn } All the functional dependencies in R can be inferred from the function dependencies obtained from the natural join (pair-wise) over all the Ri.

Lossless join A decomposition is lossless join if a natural join of R1, R2, ... Rn = R with no spurious tuples.

Alternatively, a decomposition is lossless join if it is attribute preserving and dependency preserving.

Rules for inferring functional dependencies from a set of functional dependencies: A, B, C are non-empty subsets of attributes of relation R

(Armstrong's axioms) (1) Reflexitivity	if B <= A, then A \rightarrow B
(2) Augmentation	if A \rightarrow B, then A C \rightarrow B C
(3) Transitivity	if A \rightarrow B and B \rightarrow C, then A \rightarrow C
(Additional rules deri (4) Self determination	vable from Armstrong's axioms) $A \rightarrow A$
(5) Decomposition	if A \rightarrow B C, then A \rightarrow B and A \rightarrow C
(6) Union	if A \rightarrow B and A \rightarrow C, then A \rightarrow B C
(7) Composition	if A \rightarrow B and C \rightarrow D then A C \rightarrow B D