
	 1	

Review	for	311	Midterm:	
Recursion	
Queue	
Stack	
BT	
BST	
AVL	
Big	Oh	and	counting	
	
	
Counting	
	
(1)	What	is	T(n)	for	insertion	sort	(Wikipedia):	
	
i ← 1  
while i < length(A) 
     j ← i 
     while j > 0 and A[j-1] > A[j] 
         swap A[j] and A[j-1] 
         j ← j – 1 
     end while 
     i ← i + 1 
 end while 
	
	
(2)	What	is	T(n)	for	selection	sort	(Wikipedia):	
 
/* a[0] to a[n-1] is the array to sort */  
int i,j;  
int n; // initialise to a's length  
  
/* advance the position through the entire array */  
/*   (could do j < n-1 because single element is also min element) */  
for (j = 0; j < n-1; j++)  
{  
    /* find the min element in the unsorted a[j .. n-1] */  
  
    /* assume the min is the first element */  
    int iMin = j;  
    /* test against elements after j to find the smallest */  
    for (i = j+1; i < n; i++)  
    {  
        /* if this element is less, then it is the new minimum */  
        if (a[i] < a[iMin])  
        {  
            /* found new minimum; remember its index */  
            iMin = i;  
        }  
    }  
  
    if (iMin != j)   
    {  
        swap(a[j], a[iMin]);  
    }  
}  
	
	



	 2	

	
(3)	Here	is	pseudo-code	to	multiply	two	n	X	n	arrays	together	.	What	is	T(n)?	
	
(A * B = C, 
c[i,j] = a[i,0]*b[0,j] + a[i,1]*b[1,j] + … a[i,(n-1)]*b[(n-1),j]) 
	
for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) 
      C[i, j] = 0; 
 
for (i = 0; i < n; j++) 
   for (j = 0; j < n; j++) 
      for (k = 0; k < n; k++) 
         C[i,j] += (A[i, k] * B[k,j]) 
	
	
	
(4)	For	each	of	the	following	T(n)	formulas,	give	Big	Oh	
	
a.	5	n2	+	3000	n	log	n	+	25	
	
b.	3000	n2	+	5	n	log	n	+	25	
	
c.	1	+	n	+	n2	+	n3	+	n4	
	
d.	10	+	n	+	n2	+	n2	log	n	
	
e.	10n	+	n5	
	
f.	15	n2	log	n	+	15	n	(log	n)2	
	
	
(5)	Using	a	queue,		

insert(x)	means	append	x	to	tail	
	 delete()	means	return	value	from	head	
	
Consider	an	initially	empty	queue,	and	these	operations	in	order:	
insert(1) 
insert(2) 
insert(3) 
delete() 
insert(4) 
insert(5) 
delete() 
delete() 
insert(6) 
	
What	is	content	of	queue	from	head	to	tail.	
	
	
(6)	Consider	a	circular	queue	implemented	on	a	1D	array.	
	 head	points	to	the	element	at	the	head	of	the	queue	
	 tail	points	to	the	(empty)	element	where	the	next	incoming	element	will	be	placed.	
	 one	element	in	the	array	is	always	kept	“empty”	
	



	 3	

The	following	pseudo-code	for	delete()	and	insert()	is	incorrect.	Fix	the	code.	
	
/* test for full */ 
boolean isFull() { 
   return head == (tail + 1) % size; 
} 
 
/* test for empty */  
boolean isEmpty() { 
   return head == tail; 
} 
 
/* insert x at tail */  
void insert(x) { 
   if ( !isFull() ) 
      tail = tail + 1; 
      q[tail] = x; 
   else error(); 
} 
 
/* delete from head */  
type delete() { 
   if ( !isEmpty() ) { 
    return q[head]; 
    head = head + 1 % size; 
   return error(); 
} 
	
	
(7)	Consider	this	string	“a	b	c	c	b	d	e”.		Use	a	stack	to	determine	if	the	string	is	a	palindrome.	
Give	the	content	of	the	stack	after	the	second	‘c’	has	been	read	and	processed.	
	
	
(7*)		Something	similar	for	any	of	the	stack	algorithms	(evaluate	postfix,	infix	à	postfix,	delimiter	
matching,	…	)	
	
	
(8)	Consider	this	infix	expression:		(	(	1	+	2)	*	3)	/	(4	–	5).	
	
Give	(a)	postfix,	(b)	infix,	(c)	expression	tree.	
	
	



	 4	

	
(9)	Consider	this	binary	tree.	
	
a 
 b 
  c 
   d 
    NULL 
    NULL 
   NULL 
 
  e 
   NULL 
   NULL 
 
 
 f 
  NULL 
  g 
   h 
    i 
     NULL 
     NULL 
 
    NULL 
 
   NULL 
 
  
 
	
Give	(a)	inorder,	(b)	postorder,	(c)	preorder,	and	(d)	breadth	traversals.	
	
	
(10)	For	the	binary	tree	given	above,	give	height	and	depth	at	every	non-NULL	node.	
	
	
	
(11)	What	is	the	binary	search	tree	obtained	by	inserting	the	following	data	in	order	shown:	
50,	20,	10,	30,	80,	100,	110,	90,	85.	Call	this	tree	TREE	
	
	
(12)	From	TREE,	show	the	resulting	tree	from	deleting	80.	
	
	
(13)	From	TREE,	show	the	resulting	tree	from	deleting	50.	
	
	
(14)	From	TREE,	show	the	OTHER	resulting	tree	from	deleting	50.	
	
	
(15)	What	is	the	AVL	tree	obtained	by	inserting	the	following	data	in	order	shown:	
50,	20,	10,	30,	80,	100,	110,	90,	85.		
	
	
(16)	Consider	the	quad.	



	 5	

int quad (int n) { 
   if  (n <= 0) return 1; 
   if (n == 1) return 1; 
   if (n == 2) return 2; 
   if (n == 3) return 3; 
   return quad (n – 3) * quad (n – 2); 
} 
	
(a)	What	is	the	result	for	quad(8)?	
	
(b)	How	many	times	is	quad()	invoked	when	called	with	quad(8)		(include	the	quad(8)	invocation)?	
	
(c)	Suppose	you	are	memo-izing.		Give	the	memo	table	after	you	return	from	a	call	to	quad(6).	
	


