KOCH CURVE

Start with a line segment $\underline{p0}$ \underline{pf} , where $\underline{p0}$ = (x0, y0) and \underline{pf} = (xf, yf) Replace line segment $\underline{p0}$ \underline{pf} with

three segments: p0 pc, pc p2, p2 p1, p1 pf

p0 and pf are given.

Calculate
$$pc = (xc, yc) = (1/3(xf-x0), 1/3(yf-y0))$$

 $p1 = (x1, y1) = (1/3(xf-x0), 2/3(yf-y0))$
 $p2$ as calculated below.

Given a center of rotation, (xc, yc), rotate another point (x1, y1) by Θ degrees, the equations for the new point (x2, y2) are given above. See http://stackoverflow.com/questions/12161277/how-to-rotate-a-vertex-around-a-certain-point

$$x2 = xc + (x1 - xc) * \cos \Theta - (y1 - yc) * \sin \Theta$$

 $y2 = yc + (x1 - xc) * \sin \Theta + (y1 - yc) * \cos \Theta$

$$\Theta = 60 \text{ degrees:}$$

 $\cos(60^{\circ}) = \frac{1}{2}$
 $\sin(60^{\circ}) = \text{sqrt}(3)/2$

