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ABSTRACT

Genetic programming suffers diffi-
culty in discovering useful numeric con-
stants for the terminal nodes of its s-
expression trees. In earlier work we pos-
tulated a solution to this problem called
numeric mutation. Here, we provide em-
pirical evidence to demonstrate that this
method provides a statistically signifi-
cant improvement in GP system perfor-
mance on a variety of problems.

1 Introduction
A weakness of genetic programming (GP) is the difficulty it
suffers in discovering useful numeric constants for the ter-
minal nodes of the s-expression trees. At first glance, this
weakness is somewhat surprising: Genetic Algorithms, from
which GP is derived, are highly suited to the task of optimiz-
ing numeric parameters. GP’s difficulty with numeric con-
stants derives from their representation as tree nodes, while
the reproduction operations (including mating and mutation)
affect only the structure of the trees, not the composition of
the nodes. Therefore the individual numeric constants are not
affected by reproduction operations (including mutation and
cross-over), and thus cannot benefit from them.

GP’s difficulty with numeric constant generation is rela-
tively well known. In a speech at GP97 John Koza said:

The finding of numeric constants is a skeleton
in the GP closet... [and an] area of research that
requires more investigation.(Koza 1997)

The traditional way of generating new numeric constants
is indirect, by combining existing numeric constants within
novel arithmetic s-expressions. The leaves of the trees corre-
sponding to these s-expression are all numeric constants, and
so the s-expression necessarily evaluates to a numeric value.
The entire s-expression can thus be viewed as a single nu-
meric constant terminal node, with a value equal to that of

the s-expression. We call this process of numeric constant
creationarithmetic combination.

It is also possible to generate numeric constants even when
none are provided in the original terminal set. For exam-
ple, a terminal representing a variable could appear in an s-
expression consisting of the variable being divided by itself,
effectively yielding the constant 1.0. Once the constant 1.0
exists, 2.0 can evolve via an s-expression that adds 1.0 to it-
self. Having the constants 1.0 and 2.0, the constant of 0.5
can evolve via an s-expression that divides 1.0 by 2.0, etc.
In this way the GP process can generate an arbitrary number
of constants, even when no numeric constants are included
in the original terminal sets. We call this process of numeric
constant creationarithmetic genesis.

Although the spontaneous emergence of constants is pos-
sible via arithmetic genesis and arithmetic combination, the
techniques are tedious and inefficient. We are examining sev-
eral techniques for facilitating the creation of useful, novel
numeric constants during a GP run. In this paper we report on
one such technique,numeric mutation. We demonstrate that
numeric mutation provides a significant improvement in the
ability of GP to solve a symbolic regression problem.

2 History
Some of the early enhancements to the GP process facilitated
the creation of constants. These enhancements (Koza 1992)
consisted of including a small number of numeric constants
and/or theephemeral random constant,<, in the original ter-
minal set. (Each time the ephemeral random constant is se-
lected as a terminal in the creation of the population of gen-
eration 0, it is replaced with a randomly generated number
within some specified range.)

Both of these techniques seed the genospecies with nu-
meric constants. The ephemeral random constant is particu-
larly helpful because it provides many different numeric con-
stants in generation 0. Even so, most problems require a so-
lution that uses numeric constants other than those provided
in the original terminal set or generated by the ephemeral
random constant. Such constants must be evolved tediously
by arithmetic combination or arithmetic genesis (though the
larger initial pool of numeric constants in the genospecies



does make arithmetic combination more likely.)
Even with the use of the ephemeral random constant and/or

the presence of predefined constants in the terminal set GP
still has difficulty generating sufficient numeric constants. In
his first GP book (Koza 1992), John Koza uses GP on a prob-
lem consisting of discovering just a single numeric constant.
Despite the use of the ephemeral random constant, the GP
system still required 14 generations to create a solution, an
s-expression comprising almost half a page. This is but one
simple example, yet it illustrates that the creation of numeric
constants remains a weak point of GP.

3 Numeric Mutation
Numeric mutation is a technique for facilitating the creation
of useful, novel numeric constants during a GP run. Numeric
mutation is a reproduction operation which, like mutation or
cross-over, is applied to a portion of each population each
generation. Numeric mutation replaces all of the numeric
constants with new ones in the individuals to which it is ap-
plied. The new numeric constants are chosen at random from
a uniform distribution within a specific selection range. The
selection range for each numeric constant is specified as the
old value of that constant plus or minus atemperature factor.
The terminology derives from the similar concept of tempera-
ture in simulated annealing ((Kirkpatricket al.1983, Rumel-
hart and McClelland 1987)et al) in that when the temperature
factor is larger, numeric mutation creates greater changes in
the affected numeric constants.

The temperature factor is determined by multiplying the
raw score of the best individual of the current generation by a
user specifiedtemperature variance constant, 0.02 here. The
standardized fitness score of the best-of-generation individ-
ual approaches zero as it approaches a perfect solution to the
problem domain. Consequently, the effect of this method for
selecting the temperature factor is that when the best individ-
ual of a population is a relatively poor solution, the selection
range is larger, and therefore there is an overall greater po-
tential for change in the numeric constants of the individuals
undergoing numeric mutation.

Over successive generations, the best-of-generation in-
dividual tends to improve and so the temperature factor
becomes proportionally smaller. As the temperature fac-
tor decreases, numeric mutation causes successively smaller
changes to the numeric constants. This should allow the GP
process to “zero in on” (i.e., retain across generations with lit-
tle change) those numeric constants that are useful in solving
the given problem.

4 Experimental Evaluation
In our previous work (Fernandez and Evett 1998), we inves-
tigated the use of numeric mutation in only a single symbolic
regression problem. Our research with numeric mutation is
still at an early stage, but in this paper, we investigate the
efficacy of numeric mutation in general. We show the effi-

cacy of numeric mutation in a simpler symbolic regression
problem and also in a much more difficult problem from the
domain of financial analysis. The experimental hypothesis of
our original experiment was that numeric mutation increases
the effectiveness of the GP process in solving a single sym-
bolic regression problem. The experiment involved the study
of a problem, defined by 11 pairs of numbers representing the
x andy coordinates of 11 points (target points) on a plane.
Note that all of these points lie along the curve defined by the
generating function:

y = x3 � 0:3x2 � 0:4x� 0:6 (1)

This function is considered the target or goal of the sym-
bolic regression only indirectly; an infinite number of curves
pass through these 11 points, and the goal is to discoverany
function that passes within a distance of plus or minus 0.1
along they–axis for thex value of each of the points.

At the end of each generation, the numeric mutation tech-
nique is applied to 40 randomly selected individuals of the
200 with the best fitness from a population of 1081. Each
selected individual is replaced with a copy wherein each nu-
meric constant has been mutated, as described in Section 3.
The fitness function is reevaluated for each of the new individ-
uals, so that the fitness-ranking of the population corresponds
to the altered population.

The choice of the number of elements to be numerically
mutated, the size of the group that they are selected from, and
the use of 0.02 as the temperature variance constant, were
based on experiments involving other regression problems
that suggested that these values tended to maximize the ben-
efit of the numeric mutation (Fernandez 1997).

To test our hypothesis, we ran our GP system 1000 times
with numeric mutation and 1000 times without. Each gen-
eration of a numeric mutation run included the evaluation
of the fitness function on 40 additional individuals (those
created by the numeric mutation process). To compensate
for the extra work done by the numeric mutation runs, the
populations of the non-numeric mutation runs contained 40
more individuals. This makes comparisons between the re-
sults of the two techniques more fair, as both algorithms are
then doing roughly the same amount of work. (Otherwise
any performance advantage observed in the numeric mutation
runs might be ascribed to the additional individuals evaluated
therein.)

Each run was allowed to continue until a function was
found that met the criterion described above, or until 50 gen-
erations were completed. Runs that discovered a function
matching the target points within the 50 generation limit were
considered successful. We ran our experiments on an AMD
166Mhz K6 runningMicrosoft Windows 95. We used our own
hand-coded GP system (described in (Fernandez and Evett
1997a, Fernandez 1997)), using the control parameters spec-
ified in the tableau shown in Table 4 and anelitist graduated
overselection strategyto select individuals from the popula-
tion for reproduction and crossover, as described in (Evett and



Population size 1121 or 1081(NM)
% ramped complete growth 100
% ramped partial growth 0
Crossover Percentage 90
Mutation Pertcentage 0
Max Number of Runs 1000
Max Number of Generations 50
Max Nodes per Tree 200
Selection Strategy Graduated Elitist
Initial Tree Minimum Depth 3
Initial Tree Maximum Depth 7
RandomSeed 0

Table 1 The GP tableau.

Fernandez 1997).

4.1 Results
Of the 1000 runs without numeric mutation, 328 were suc-
cessful, while 541 of the runs with numeric mutation were
successful. Thus, runs using numeric mutation were about
65% more likely to terminate successfully than the plain runs.
The success ratio of the GP system was clearly higher when
using numeric mutation. To determine whether this outcome
was statistically significant, we performed a Large-Sample
Statistical Test for Comparing Two Binomial Proportions (as
described in (Mendenhall and Lyman 1972), page 203).

The null hypothesis for the significance test was that the
populations have the same success ratios, and the alternate
hypothesis was that they were not the same. This choice of the
alternate hypothesis necessitated the use of a two-tail test. It
might be argued that numeric mutation is a modification to the
GP technique involving additional work, and consequently we
should be interested only if it provides an improvement to
GP. An alternate hypothesis that reflects that argument is that
GP with numeric mutation has a higher success ratio than GP
without. Such a choice would permit the use a one-tailed test.
We have used the first hypothesis and the corresponding two-
tailed test because it is more stringent(Fogel 1997).

The results of the test were that we rejected the null hypoth-
esis with 95% confidence. Thus we conclude that numeric
mutation’s improvement to GP is statistically significant for
this problem. A further indication of this is that not only
does numeric mutation yield successful runs more frequently,
but also the successful runs require, on average, fewer gen-
erations than the successful runs on the GP system without
numeric mutation. The average number of generations in a
successful run with numeric mutation was 24.44, while the
average without numeric mutation was 29.67. Figure 1 is a
histogram of the number of generations required to complete
the successful runs with and without numeric mutation. Each
column of the graph corresponds to a sum across five gener-
ations. For example, the figure shows that of the 1000 runs
using numeric mutation, 103 finished successfully between
generations 21 and 25, inclusive.
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Figure 1 Number of runs that terminated successfully
at each generation for GP using and not using numeric
mutation.

This increase in efficiency was also reflected in run-time
performance. The 1000 runs using numeric mutation required
8.28 hours to complete, while the 1000 runs without numeric
mutation required 11.63 hours. The average time to complete
a successful run with numeric mutation was 16 seconds while
the average time without numeric mutation was 24 seconds.
(The exact value of the timings is not important, but their rel-
ative values are. The timing information under Windows 95
is somewhat imprecise, but serves to support the conclusions
derived from the other experimental results. )

The question still remains “Does numeric mutation provide
a general benefit to the GP process, or is the benefit somehow
limited to this spesific problem?”. To investigate this issue we
have conducted two similar experiments. The first is a simpler
symbolic regression problem and the second is a much more
difficult financial analysis problem.

4.2 A Simpler Regression Problem
The first of these additional problems is a simpler symbolic
regression problem. Again we will try to evolve a function
which passes through eleven given target points. This time
the target points all lie on the curve defined by the function
y = x2+3:141592654. The problem is specified by providing
11 pairs of numbers representing thex andy coordinates of
11 points (the target points).

Again an infinite number of curves pass through these 11
points, and the goal is to discover any function that passes
within a distance of plus or minus 0.00001 along they-axis
for thex value of each of the eleven target points.

4.3 Simpler Problem Results
Our experimental hypothesis is that the NM hybid improves
GP’s Ability to solve this simpler symbolic regression prob-
lem by having a higher success ratio then the non-hybrid GP.

We used a control set of GP runs where NM was not ap-
plied. We did 8 additional sets of 100 runs using different
values for the Temperature Score Parameter (TSP). The pop-
ulation for these runs was set to 1041 so that the control pop-
ulation size of 1081 would be 40 individuals larger. The NM
hybrid does 40 extra calls to the fitness function per genera-
tion to try to equalize the amount of work performed in all sets
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Figure 3 The success ratios of the control run (with no
hill climbing) and additional NM runs when applied to the
simple symbolic regression problem.

of runs. The equalization is not perfect, because the larger
populations require more work during cross-over and selec-
tion, but this amount of work is small proportional to that
spent on the individual evaluations.

Only the runs with a TSP of 2.0 or higher had success ratios
with statistically significant differences from the control set.
To gain more information about the effects of different TSP
values on the success ratio of this technique we ran an exper-
iment in which we varied the values of the TSP from 100 to
1000 in steps of 100. The results are shown in Figure 3.

All of these sets of runs had success ratios that had differ-
ences with the control set that were statistically significant.

The conclusion that we are led to from this is that in the
domain of very simple symbolic regression that the use of
Numeric Mutation provides a useful enhancement to the GP
process, and that the choice of 500 is reasonable for the TSP.

We have shown that the results of our original experiment
can be extended to simpler problems, but we still need to an-
swer the more important question, “Can NM provide benefit
when applied to harder problems?”. In our previous work
(Fernandez and Evett 1997b), we showed that GP could be
applied to problems in the domain of financial analysis. We
now use a problem from this domain to test the ability of NM
to provide benefit when applied to more difficult problems.

4.4 A More Difficult Problem
Again the goal is to do a type of symbolic regression, in this
case the target points are a financial time series. We use a
target time series that is derived from the daily closing prices
of the S&P 500 from the years 1994 and 1995. The S&P
500 is an index that is created by taking weighted averages of
the stock prices of 500 large US companies. Instead of using
just one independent variable as in the previous experiments,
we use 33 independent variables taken from time series de-
rived from the S&P 500 itself and the closing daily prices of
32 Fidelity Select Mutual Funds. All of the financial time se-
ries used for independent variables are preprocessed. The first
step to transform each series into a series of 21-day moving
averages. This reduces the effect of day to day fluctuations
and allow the GP to concentrate on the general trend of these
financial time series. The second preprocessing step converts
the series resulting from the first preprocessing step into a se-
ries of percent changes between each day and 21 days prior.
This normalizes the data within each series and between dif-
ferent series. The target data points are taken from the S&P
500 and preprocessed with the same two steps but are also
shifted 10 days, so that the system is will try to predict the
general trend, two weeks (10 business days) into the future.

Creating systems that predict the trends of a financial time
series is a very important problem to the financial commu-
nity. However it is not the goal of this research to create
such a system, but rather to examine the potential benefit of
NM as a technique for improving the GP’s numeric constants
when applied to a more difficult problem. This problem is
significantly more difficult than the previous two symbolic re-
gression problems. Besides having 33 independent variables,
there is no predefined mathematical relationship between the
independent variables and the target points. Because of the
difficulty of the problem we have made the criteria for suc-
cess much less stringent. The goal is to find a function that
passes within 0.006 of the target value for 90% of the target
points. A system for determining the econometric relation-
ships between the independent variables and the target values
would probably require more accuracy, but these less strin-
gent termination criteria are often useful to prevent overfit-
ting in complex domains. In any case, we emphasize again
that our goal here is only to test NM as an enhancement to
GP in this problem domain. A real system would also include
testing on a set of data not used in training. This capability
is included in the software we have developed but is not used
here.

The top line in the graph in Figure 4 is the daily closing
price of the S&P 500 (using the scale on the left). The solid
line below it is the graph of the target time series after the
preprocessing described above (using the scale on the right).

The dotted line in Figure 4 is a function evolved using stan-
dard GP (without NM) that would be considered a successful
solution because it meets the criterion described above. The
degree to which this curve differs from the target time series
illustrates the latitude of our termination criteria.
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The example evolved function was:Y = (((0:38) �
((�0:20923) � (FSPTX � (((�0:79706)=(0:38)) �

((FSUTX � FSCSX) � (FSCGX � (�0:34247))))))) �
(SPX� ((0:82794)=(0:54431)))) The independent variables
of this evolved function represent various time series.
(For example, FSPTX is the value of the Fidelity Select
Technology Portfolio.)

4.5 Results from the More Difficult Problem
Does NM improve GP’s ability to solve this problem from
the financial analysis domain? Our experimental hypothesis
is that NM hybrid will have a higher success ratio then the
non-hybrid GP.

Again we used a control group of a set of GP runs with-
out NM. This time the control set had a population size of
561 which is 20 individuals larger than the population of the
sets with NM. This allows all sets to perform the same num-
ber of calls to the fitness function. Note that in this case we
have applied NM to 20 individuals chosen from the top 100
individuals in the population (sorted by fitness scores). The
results are shown in Figure 5.

Using the same statistical test as before (Section 4.1) we
found that the difference between the non-hybrid set of runs
and the set with NM with a THP of 0.000001 was statistically
significant. So in this case we can reject the null hypothesis
and conclude that NM with this THP has a superior success

ratio to that of the non-hybrid GP.
The success ratios of all of the other sets of NM hybrid

GP did not have statistically significant differences from the
success ratio of the non-hybrid control group, and thus we
could not reject the null hypothesis.

We conclude that we can reject the null hypothesis for one
set of runs with NM, but still feel that in the future we should
do more experiments with larger populations with more runs
and allow the runs to continue for more generations.

5 Interpreting the Results
We have demonstrated that numeric mutation can provide an
improvement to the GP algorithm as it is applied to these
problems. The next step is to understand from whence this
benefit derives.

It is apparent that the numeric mutation technique provides
a much greater diversity of numeric constants to the GP. Plain
GP (without numeric mutation) starts (in generation 0) with
a fixed number of numeric constant leaf nodes in the entire
population (i.e., in the genospecies). Whenever the selection
process causes all copies of a numeric constant to be removed
from the population, that numeric constant is effectively lost
for the remainder of the run. Thus, with each generation the
number of unique numeric constant leaf nodes can never in-
crease and, indeed, typically decreases monotonically. Nu-
meric mutation replaces all of the numeric leaf nodes with
new numeric constants in all of the elements to which it is
applied. Thus the GP process gains many new numeric con-
stants each generation by using numeric mutation.

We conducted experiments to determine if the steady influx
of new numeric constants, alone, accounted for the benefit of
the NM technique. We repeated the original experiment, but
instead of using NM we completed 1000 GP runs in which
40 elements were selected after each generation in the same
way as in numeric mutation, but all of their numeric con-
stant leaf nodes were replaced with new numeric constants.
These new constants were selected randomly from the interval
(�1000:0; 1000:0) using a uniform distribution. We call this
processnumeric replacement. Numeric replacement is sim-
ilar to the technique referred to assmall-mutationin (Harris
and Smith 1997) except that numeric replacement concerns
only numeric constant leaf nodes, while small-mutation can
affect any type of node.

The result of the numeric replacement experiment was that
only 278 of the runs were successful by the 50th generation
as compared to 328 successful runs with plain GP. To deter-
mine if this difference was statistically significant we again
used the Large-Sample Statistical Test for Comparing Two
Binomial Proportions described above. We determined, with
95% confidence, that numeric replacement produces a statisti-
cally significantdegradationof performance when compared
to plain GP. Therefore it is highly probable that the benefit de-
rived from numeric mutation does not derive solely from the
influx of new numeric constants, but also from the values of
those constants.
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A potential criticism of this experiment is that the range
(e.g.(�1000; 1000)) from which the new constants were cho-
sen in numeric replacement did not correlate well with the
problem domain. The function used to generate the regres-
sion’s target points (see Equation 1) contains no numeric co-
efficients with an absolute value greater than 1.0. So the range
may be introducing numeric constants into the genospecies
that are unlikely to be useful in solving the specific symbolic
regression problem under study.

To investigate this possibility we again conducted the nu-
meric replacement experiment, but used the range(�1:0; 1:0)
from which to select the new constants. Of the 1000 runs,
336 were successful by the 50th generation. This, at least,
was more than the 328 successful runs that occurred with the
plain GP, but the Large-Sample Statistical Test for Comparing
Two Binomial Proportions determined that this improvement
is not statistically significant at the 95% confidence level. We
again conclude that the benefit of numeric mutation does not
derive solely from the influx of a large number of new nu-
meric constants. A summary of all these results is shown in
Figure 6. The entries in the figure labeled “Random” corre-
spond to numeric replacement.

Having eliminated other possible explanations, we spec-
ulate that the benefit of numeric mutation derives not sim-
ply from the introduction of new numeric constants into the
genospecies, but also from these new constants being intro-
duced only into s-expressions at locations in genomes where
arithmetically similar numeric constants have already demon-
strated some measure of success, insofar as they appear in in-
dividuals in the top part of the population, as scored by the
fitness function. We further speculate that the choice of new
numeric constants is further enhanced by making them in-
creasingly more similar to the existing “successful” constants
as the population comes closer to finding an acceptable solu-
tion.

6 Conclusion and Future Work
We conclude that the use of numeric mutation should be con-
sidered for GP problem in which floating point numeric con-
stants are used as terminal nodes. Numeric mutation is easy
to implement and does not add significant additional overhead
to the GP algorithm.

Several additional experiments are suggested by this work.
We plan to see if additional benefit can be derived by applying
numeric mutation only to a portion of the numeric constants in
selected individuals, and to experiment with alternative meth-
ods for determining the temperature factor, such as using the
raw score of the individual to be mutated rather than the raw
score of the best element in the generation.
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