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GENETIC PROGRAMMING IN C++
( Gpc++ Version 0.40)

Adam P. Fraser

Department of Electronic & Electrical Engineering, University Of Salford, Salford, M5 4WT, UK
Phone: 061 7455000 x3633
Email: a.fraser@eee.salford.ac.uk

‘Evolution is all about assembling the improbable by tiny steps;
and not until the unlikely has been reached do we notice just what it can do.’
Steve Jones - 'The Language Of The Genes'

INTRODUCTION

This is a short report documenting the maneslution of a computer program whi@volvescomputer
programs. Gpc++ from humble beginningssevolvedinto a multiple purpose genetic programming kernel
on which to evolve modules of program code.

This documents outlines the genetic programming paradé&grd its extension, automatically defined
functions,and their implementation within steady statarchitecture. A number of selection, recombination
and mutatioroperators have been producatthese are explained. The Celass definitionsare discussed
and examples of evolving code are worked through to show the user how to write the code for themselves.

For a more thorough examination into genetic programming John Kbaaks and Andrew Singleton's
magazine article are an excellent beginning. For eloquent explanatictsaoly state genetprogramming
the reademay wish toread papers by CraiBeynolds. These referencaie outlined in more detail in the
reference section at the end of this report.

GENETIC PROGRAMMING : AN OVERVIEW

Genetic programming is a further extension to ¢beplexity of evolving structures.Within the genetic

programming system the structures undergoing adaptation are hierarchical computer gdrageanos LISP-
like symbolic expressions. The size, shapand structure of the solution as a genetic programefs

unspecifiedand isfound by usinghe genetic programming operators. Solving@blem thereforéecomes a
search through all the possible combinations of symbolic expressions defined by the programmer.

The processes which make up a complaie of genetic programming can liivided into a number of
sequential steps;

1...Create a random population of programs using the symbolic expressions provided.

2...Evaluate each program assigninditaess value according to a pre-specified fitness function which
measures the ability of the program to solve the problem.

3...Using some predefined reproduction technique copy existing programs into the new generation.

4...Genetically recombinghe new population withthe crossover function from a randomly chosen set of
parents.

5...Repeasteps 2 onwards fahe new populatioruntil a prespecifiedermination criterion habeen satisfied
or a fixed number of generations has been completed.

6... The solution to the problem is the genetic program with the best fitness within all the generations.

The creation of a genetic program is the combination of the domain depesyehblic expressions
predefined by the designer. Thesanbolic expressioare divided intotwo sets, if the expression requires
arguments it is placed in a function set otherwise it is plagéun the terminal set. Each individual
expression must have the property of closure and some combination must be sufficient to solve the problem.

The LISP symbolic expressionthat are thebasis ofthe genetic programmingystem are best shown
graphically with a parse tree. Tegmbolic expression (+ ( *3 (-4 2)) ( + 2 2hecomeghe parse tree in
Figure 1. The functional alphabet of the genetic program is { +, ‘gndithe terminahlphabetis { 2, 3, 4 }.
Though this alphabet isorrect forthe genetic program this igrobably only asmall subset ofthe total



available to the genetic programmisgstem. Genetiprogramming

6 also attempts to measure the complexity of the solution by giving each
genetic program a structuredmplexity. Inthe case ofthe example

shown the structuratomplexity is 9and issimply a measure of the

° 6 nodes within the parse tree.

Closure

@ e e The symbolic expressionswill be operated on by the genetic
programming mechanism it is therefanecessarythat all possible

arrangements of the expressions will lead to a program vdaichoe
@ evaluated without error.This property ofthe expressions is termed

the closure property.

Figure 1: A Genetic Program

The standard division operator ( / ) is an example gfossible
infringement of the closure property. If within the evaluafoocesgshere is a division by zero the evaluating
program itself will cause an error which whialt thegenetic programmingystem. It is therefore necessary to
rewrite the division operator in a way that could not cause a halt in the evaluation process.

int divide(intx,inty){ if (y==0) return0; else return(x/y); }
Most genetic programmers who use the divide operator write this as %.

Sufficiency

When choosing theymbolic expressions it important thathey canexpress in some combination a solution
to the problem. Genetic programming malawious the a priori knowledge being placedithin the
evolutionary mechanism by making it part of the design process.

This explicitknowledge bythe designer is aecessary prerequisite of any evolutionary designdbas not
limit the use of the system. It is only at the point where detailed knowledge of the peasttléow to solve it
are placed within the evolutionary mechanism that limitations can occur if novel solutions are required.

For example in a problem dfie solitarytrail following ant, inwhich an artificial agenévolvesthe ability to
follow a trail which increases in complexitthe further the agent travels, tegmbolic expressionsontain
IfPheremoneAhead, MoveForwar@iurnRight andTurnLeft. If the MoveForward expression was excluded
from theevolutionary mechanisrthen thesolution couldnot be found as it isbviousthat no otheoperator
moves the agent in any direction.

AUTOMATICALLY DEFINED FUNCTIONS

Koza spends a wholmokexplaining andanalysing automatically defined functions (Genetic Programming Il
or Jawsll: The ADF Strikes Back) so it is unlikelyhat this shorintroduction will do morethan wet the
appetite of the reader.

Genetic programming can leensidered as attemptintiproughselectionist techniques, to produce computer
programs which map the environment (which alefinesthe problem). If we consider éhess boardnd a
pawn which canmove one space in amjirection at any timeghen agenetic programwhose fithess is
proportional to the amount efew squaresnovedto, would have to make at least 6#bves togain the
maximum fitness. Within such a structured environmentabisousthat there are certaiepeatablélocks

of moveswhich would havethe sameeffect. For example ithe pawnwasstarted from thdottom lefthand
corner of the board itould movenorth seven times (as waart on alock), east once, south seven times and
east onceagain. Do thisfour timesand thepawn hascompleted its task. Ithe genetic prograncould
reproducethis it could go from dength (or structuratomplexity) of 64 to (7+1+7+1) +4 20. This is the
promise of automatically defined functions.

Ratherthanusing a single root branch of the genetic progransyiséem allowsurther branches to be added.
Each branch has a separate funcaon terminakset with the root brancbommonly being used as a simple
function call for the other branchegfor further explanationsee the Lawnmower problem section).
Recombination is constrained to &dthin particular branchesnly asthe differing functiorand terminakets



could cause conflict dfhe closure property.The genetic programs can bensidered as havingp-evolving
branches.

STEADY STATE GENETIC PROGRAMMING

The genetic programming paradigm as detailed by Kasgs twopopulations forthe current and next
generation. Reproductiacopies members dhe current population into the next generation ksekective
criteria. Memberswithin this new generatiorare thenrecombined to produce new genetic prograri$is
next generation becomes the current and the process continues until the system finishes.

The initial operatingsystem forgpc++ was DOS whichas avery limited amount oimemory available to the
programmer without resorting to confusiand non-portable) methods. Téede forgpc++ therefordad to
limit the size of the memory allocation used by the system. The simplest methdd dispenswith the two
populationsanduse a slightly different method for reproductiofhis method hasince been given aame,
steady state genetic programming.

In steady state genetic programming the parents to be reconabemalected fronthe population again using
somecriteria but a child is also chosen from the same population. rd¢embined genetic program is
evaluatedand thentakes the place of the child alreadglected. A generatiowithin such asystem is
considered as completed once the number of children created is equal to the size of the population.

PARSE TREES

The basic premise for the implementation of gpc+thad the important detail of GP is in teealuation. The
creation, selectiorand genetic operators arassumed to take a negligible amount of time so instead all
optimisation should béocusedupon limiting the processingverhead of evaluating a genetic prograihis
assumption habeen borne out ithe experiments performed in gpc++ where the evaluationtameteadily
increased with the population staying approximately constant.

The simplestindfastest method of moving from opart of thegenetic program to anothesmould be to have
each memory locatiotaid out concurrently. Unfortunatelythe hierarchical nature of genetic programming
makes thigprocess impossibleThe secondastest method is to keep pointergtie nextblock of codewhich
youwish to travel teandjump from memory location to memory location at wilthis is the implementation
used within gpc++ which is based on the basic structure of a parse tree.

CREATION
The type of creation performed can be one of five types which are defined in the code as numerical values;
Variable: Where the genetic program can be of a size or structure up to the maximuspdeifigd for
creation (designated as 0).
Grow: Wherethe creation mechanism camly choose functionsintil the maximum depth is reached
when a terminal must be chose. This causes the size and structure of the genetic program to be the same in
all random creations (designated as 1).
Ramped: Either variable omgrow. This changes the standard methods so the populatimoken into
smallerblocksand thecreation mechanism attempts to produce genetic programs with incrpasgilgje
depths up to the maximum degtr creation. For example, a populationteh with a maximum depth of
6 using the rampegrow method would have 2 membergtoé population with depths of 2,/2embers of
the population with depths of 3 and so on up to a depth of 6 (designated as 3 for rampedavatidtie
ramped grow).
Ramped Halfand Half: This is the creation mechanisased inthe majority of the genetic programs
developed in Koza’'s GenetRrogramming. The algorithm permits half the population to be created with
ramped variable and the other half to use ramped grow (designated as 2).
Thetype ofcreation mechanism can bleosen using the CreationType contained in the GPVariable structure.
The definitions of these creations types can be found in thgpfilgpand are accessed by the user through the
gp.ini. Thecode forthe creation of a genetic program canftwend in create.ccandfor the population in
pop.cc All decisions about the type of creation is made at the population level.

SELECTION OF GENETIC PROGRAMS
Within the genetic programmingystemthe timecomeswhen from the populatiosome genetiprograms
must be selectedThis is producedhroughSelectParentsAndChild{yhich is called withingenerate.ccThis



function as its namsuggests selecthe parentdor crossoverand the child tgplace the result into. It is
designed suclhat theuser can make decision betweemvhich type of selectiormethod to be used. The
standard is ditness probabilistic method (the roulette wheel) which is includedistorical reasons. The
favoured method of most genefiwogrammers as gauged from discussionsthen genetic programming
mailing list is tournamengelection. Demetic selection allowse genetic programmer to alter the population
dynamics of an evolving system which in certain cases is a useful tool.

Fitness Proportionate

Fitness proportionate seledtse best genetiprogram using a probabilistic methbdsed mathematically on

the roulettewheel of astandard genetic algorithm. For a genetic program with 20% of the total fitness, if 100
were chosertherewould be an expected 20 tifat genetic program. The nature of ttgslection method
means thator a small number this will not be theaseand thatsome genetiprograms with a relatively small
fitness will have aminimal (but still significant) chance of being chosen. Once pghebable best genetic
program haseen foundthis replaces thavorst which is selected with an ‘inverse’ fithess proportionate
method. The code for fithess proportionate selection can be fopnddable.cc

Tournament Selection

Tournament selection randomngglects a number of genefitograms from the population. The fitness of each
member ofthis group are&omparedand the actuabest replacethe worst. This method ione whichcan be
easily implementedsing a parallemethodology.The number to randomly st for each group is currently
set at 5and can beeasily changed. Theode forthis selection methoatan befound in tourn.cc as is the
definition of the tournament size.

Demetic Grouping

Demetic groupindnasbeen predominately used as a methoch&iting prematureonvergence of particular
artificial evolutionary technigue without knowledge of the problem domain.

R\

L 1
Deme
Figure 2: A One Dimensional View of Demetic Grouping

K

The total population undergoing the evolutionary process is subdivided into a number of groups (demes) which
are unable to interact with other group&eptthrough theuse of migratory agents whireselectedusing a
probabilistic measure (Figure 2). Tlsisbdivision ofthe populatiorallowsthe demes to evolvalong separate

paths without this path becoming tightly focused upon any particular area witlylotia search spacélhis

codecan befoundwithin thedeme.cdile and there are a number aéfinitions notably those of probabilistic
wanderer selection and size of the demetic group.

CROSSOVER

Subtree Crossover

Crossover selects twgenetic programs from the populatiandselects one point on eadbachsub-tree from
this point isswapped fronthe other. Theslosure property othe genetic program ensurémt thethese new
genetic programs are still ‘leggbiossibilitieswithin the domain. Thecode for crossovecan befound in
generate.cavhich acts at the populatidavel with the codewithin cross.ccacting upon individual genetic
programs which unfortunately still requires knowledge of the genetic program structure.

Ad Addendum

Recently new methods of crossover have been discussed whidtvéaeemore points on the genetic program
andcross between thegmints. This igelatively difficult to code as selection ofcat point within thesame
sub-branch of the genetic program is not a simplistic process. Also the improvement such a techhigue can



to the genetic programming paradigm is not immediately appareahydhe wishes to adtis or otheitypes
of crossover the fileross.ccshould be altered.

MUTATION

Allele Mutation

This comprises of genesithin the genetic program beirsgvapped withother genes with certain constraints.

Any terminal can beswapped with angther terminabut functionscanonly be swappewith other functions

with the same number of arguments. This means that the mutation does not have to create new branches when
different functiontypesare swapped whichwould probably slow any form of convergencéhi& mutation rate

has been set relatively high. This can be fourallgiem.cc

Shrink Mutation  (Alpha Version - See Note)

Shrink mutation (which, | thinkyas an idea by Andrew Singletandwhosearticle in BYTE magazin&eb.
1994 givedurther explanation) takes the child of a particular genémovesthat child into theposition of
the parent. This means thgenetic programs willshrink’. This is a particularlyiseful property when
considering how long some genetic programs get as the evolutionary process continues.

NB: The shrink mutatiorrode athe momenseems to only work oparticular compilerand with particular

problems (most ADF problems work, others seem intermittent). For this re@sokm.cchas not included in
the gpc++ package. ifou are a C++ hacker or thinkou desperately needhrinkm.ccplease contact the
author or wait for the next version.

GENETIC PROGRAMMING |INITIALISATION

Once the genetic programmingn hasbegun thesystemattempts to read in a file callegp.ini. If this file
does not exist the system creates a default and then existgp.irishould always be checked befoumning
the code asncorrect parameters cannot be checlthin the codeandmay causehe program to crash (the
ADF parameter is particular susceptible to being forgotten about as | know from bitter experience).

As already shown a defawp.ini will look something like thdile shown below. The variable names aself
explanatory the numericahlues forthe creatiortype can befound by looking athe Creatiorsection ofthis
documentandalso ingp.hpp If you wished to use Kozastandard of ramped half and half the settivauld
be 2. The MaxFitness is the maximum fitness of the genetic prognamsusedwithin the probabilistic
fitness measure to calculate therst inthe population. If the maximum fitness is unknouse a different
type of selectioomethod. The MaxCreatioand MaxCrossover variablegre the maximum depth at creation
and crossover respectively the defaults are those used by Koza.

The ADF variable is very important if you wish to have onbiragle branch within the genetic program this is
designated as the root branghd thevariable should be set to (Every further branch is designated as an

ADF and must be place in a variable hence in the lawn mower problem to be discussed later in this report there
is a root and 2 automatically defined functions the ADFs variable must be set to 2.

The mutation rate is by default set to 0 giving no mutatioallat If this value was set to a 1000vitould
designateahat in allprobability one genetiprogram in a 1000vould bemutated. A value of Would require
every genetic program in the population to be mutated.

/I default gp.ini <--- this line is not important
CreationType :0

Evaluations : 100
MaxFitness : 100
MaxCreation 16
MaxCrossover : 17
ADFs :0
Mutation :0

CLASS DEFINITIONS FOR GENETIC PROGRAMMING
In attempting to implement the genetic programnspstem a classierarchy similar to thaghown in Figure
3. In such a hierarchy ailenetic operation available to the user act upon the popukatidrallunderlying



definitionsandoperations should be invisible. The neegtoduce evolving codand othemperators means
that a limited exploration of the underlying class definition are necessary.

Population

The population is primarily made up oo components an inherited class structure of GPVarisdnesa
pointer to the first member of a list of genetic programs wihicbtupy a consecutivgroup of memory
locations. Three unsigned long variables contain the information of the Iditg#ss and depth of the
complete population the inclusion of a total depth parameter is made as further analysis ma@Rad to
this becoming an important parameter of the complexity of a particular population).

class Population : public GPVariables

GP *pgpHeader; /I pointer to the first member in the gp list
unsigned long uliFitness, /I fitness of total pop
uliLength, // total length of pop
uliDepth; // total depth of pop not currently used
h
GPVariables

The GPVariables defines all the parameters of the genetic programming system and are given on the command
or through the gp.ini file. The variable names are hopefully self explanatory.

struct GPVariables

{

unsigned int PopulationSize,
NumberOfGenerations,
NumberOfADFs,

CreationType,

NumberOfEvaluations,
MaximumFitness,
MaximumDepthForCreation,
MaximumDepthForCrossover,
NumberToMutate;

unsigned long  MaximumSumFitness;

h

Genetic Operations

Population

l GPVariables I

_ ~(_Function Set)

\ Q . h ( Terminal Set)

0-0.
\Oiene \ N A
\

Figure 3: The Classes For Genetic Programming

GP

The Genetic program definition is ofpe struct as themembers need to be publicly accessibleotoer
functions. Two variables of unsigned int define the length and fitness of a genetic program. The siaacture
has a further member which points to first of a list of pointer to genes. Each gene is the start of a branch of the



genetic program. In a program with only a root the *ppgHeader would point to adisyaisingle gene. At
creation the genetic program struct@eresseshe information contained in the FS (FunctionSetd TS
(Terminal Set) structures, this can be found in create.cc.

struct GP

/[Pointer to a pointer of genes which are the headers for each tree of the adfs
Gene **ppgHeader;

/I the fitness and length of a particular genetic program
unsigned int iFitness; /I if fitness gets over 65535 oh dear
unsigned int iLength; /I If length gets over 65535 oh dear

b

Gene

The gene structure will be familiar to any programmvbp hasdeveloped codesing a tree structure. Each
gene can have either a child or fellow neighbours which are defined as pointers to further genes. The unsigned
int member iValue is the value of gene which is translated in the evolving code into the appropiate procedures.

struct Gene

/I the value of gene, gpcpp deals only with numerical values
unsigned int iValue;  // if more than 65535 program blocks, change!!!
/I pointers to child gene (if a function) and next gene (if part of a function arguments)
Gene  *pgChild,
*pgNext;

PRODUCING EVOLVING CODE

In designing this architecture there has been attempt to allow the programmer to be able to use either C or C++
to write evolving codeThis hasbeen only partly successful asiting codestill involves knowing some of the
structure of the underlying architecttaadhence C++Hopefully with the examples given a C programmer
canjust usethe codeandtechniques found there to writieeir own. If problemsarefoundthenplease contact

the author.

Five functions are crucial to the compilation and linking of the genetic programming system these are;
ostream& (*TranslatePrint)( ostream& 0s,Gene *pg);
unsigned int EvaluateFitness( GP *pgp, int Evaluations);
void InitialiseGPS( void );
void CleanUpGPS( void );
ostream& operator <<(ostreamé& os, GP *pgp )

One further function which is used throughout the code is
FITNESS (*Translate)( Gene*)

this is not called by gpc++ but by the functions above. The FITNESS is simply a definition to a particular type
of data structure.

SYMBOLIC REGRESSION

The code showrbelow is adefinition of these functions fahe symbolic regression problem included with
gpc++ 6ymbreg.cc  Thesymbolicregression problem attempts to find a function which fittoae as tahat
prespecified byhe programmer. koesthis by taking a number of points on tlumctions curvein this case
10) and evaluating the genetic program with thalue X set athat particularvalue. The accumulated
difference betweethe two set of values should tend to zeratfas genetic program gettoser tothe function.

In the example code this functionsenply x* + x>+ x>+ x. The FITNESS islefined as a type floathich is
a 32-bit value in C/C++.

/I In gpcpp all function and terminals are considered as numbers this tells the system
/I what those number should be so they can be use in Translate...() functions
void InitialiseGPS()

{
/I F(main) = { *,+,-,% }
/I T(main) = { X}
if (I(FunctionSets[0] = new FS( 4, 1,2,3,4, 2,2,2,2)) ) ExitSystem( "Initialise");
if (/(TerminalSets[0] = new TS( 1, 5)) ) ExitSystem( "Initialise" );
// only need to be set up once so use global ....
Translate = TranslateROOT;
TranslatePrint = TranslatePrintROOT;
/I Run through the function and values working out answers to function defined at
/I the beginning of this file in range 0of 0 -> 10........ccccceiiiiiniiennn.
/I FUNCTION = XM + X234 X2 + Xuriiiiiieiiieiiie e



for (inti=0;i<10;i++)
{ quesl[i] = (float)i;
answ[i] = FUNCTION( (float)i );

}

/[This is called right at the end of the GP system and can clear up all global variables
/I created in InitialiseGPS() and anywhere else..........c.ccccocveiiiiiniccnincnnns
void CleanUpGPS()

{

delete FunctionSets[0];
delete TerminalSets|[0];

}

InitialiseGPS() is called at the start of the genetic programming Within InitialiseGPS() the user can

define any global variables whi@re not going to be changed in the evaluatimtess. Irthe example the
guestionandanswers fothe symbolicregression problerare calculated. The majase for InitialiseGPS() is

to define the function and terminal sets. These must always be called FunctionSets[...] and TerminalSets]...] as
this is the names searched for by create.cc in creating the genetic programs. The function and terminal sets are
defined as a set of numbers. For termitladsinitial value isthe number of terminals and the nesatues are

the terminalaunique value. Functions usesamilar system buinclude a further set ofalues forthe number

of arguments each function has to tak&herefore the function + (designated as tladue 2) takes two
arguments which could either be a further function or the terminal X (designated as the value 5).

CleanUpGPS() ishe partnerprocess of InitialiseGPS@nd iscalled at the end of a particulaun. This
function deletes any globally allocated memory and the function and terminal sets.

/I The translate function for the procedural calls from GP iValues
FITNESS TranslateROOT( Gene *pg )

{
switch ( pg->iValue )

/I The multiplier values...........c.cccoociiiiiiiiiiciiiccic e

case 1: return Translate( pg->pgChild ) * Translate( pg->pgChild->pgNext );
/I the summation Values............ccocveiiiiiiiiiniienic e

case 2: return Translate( pg->pgChild ) + Translate( pg->pgChild->pgNext );
/I the subtraction ValUes.............ccocveviiiiiiieniieciic e

case 3: return Translate( pg->pgChild ) - Translate( pg->pgChild->pgNext );
/I divide is a special operator in GP (no closure property) so is somewhere else.

case 4: return Divide( pg->pgChild );
/I only one terminal the X variable which is set in evaluatefitness()

case 5: return globalX;
/I the default which will never be called as this code works....................

default:return 0.0;

}

}

/I The translateprint function for the character strings from GP iValues
ostream& TranslatePrintROOT( ostream& os, Gene *pg )

{
switch ( pg->iValue )

/I FUNCTIONS
/I The multiplier values...........c.cccoociiiiiiiiieiiic e

case 1:
[/l the summation Values............ccocveiiiiiiiiiiiiieniie e
case 2: os <<" (+"; break;
/I the subtraction ValUues.............ccocveviiiiiiiieniiciic e
case 3: 0s <<" (-"; break;
/I special form of divide which has closure traditonally shown as a %............
case 4: 0s <<" (%"; break;

/| TERMINALS
/I only one the X variable which is set in evaluatefitness()

case 5: 0s << " X"; break;
/Il the default which return an error and will never be called.....................
default: 0s << " Error"; break;
}
return os;

}

The implementation of gpc+#loesnot deal with the functionand terminalshemselves but with integer
values whichare contained within the gene data structure as iValue hence the pg->iValualbbtkecode.
Each value must be translated by the genetic program systemhabigeviously been developédrough the



use ofTranslate( Gene* and TranslatePrintystream&, Gene* ) modules. With the automaticdkfined

function extension the translation mechanism is altered dependent on the branch of the genetic program the
system istranslating. Instead, therefore, of using the Translatéun@tions pointers areised to these
functions FITNESS (*Translate)( Gene*and ostreamé& (*TranslatePrint)( ostreamé&, Gene* ). As the
symbolic regressiondoesnot actually makeuse of ADFs these pointers need only be specified once in the
InitialiseGPS() system.

/I The evaluate of function generally the most difficult to define for a problem
unsigned int EvaluateFitness( GP *pgp, int Evals )

FITNESS rawfitness = 0, diff = 0;
/I set up global genetic program variable to use ROOT macro defined above
/I this is useful for ADFs but not particularly helpful here

pgpGlobal = pgp;
/I this next line is included just to stop any warnings in compilation

/I it makes no difference to the code and can be deleted
Evals--;

/I the evaluation function checks with 10 values of the mathematical function
for (inti=0;i<10;i++)

/I set up X variable for mathematical function.......................
globalX = quesli];
/I calculate difference between the genetic program and the actual answer
diff = fabs(answf[i] - Translate( ROOT ) );
/1if this is really big don't make it to big.........c.ccccovvriiiiiieens
if (diff > 100 ) diff = 100;
/l add this difference to total rawfitness.............ccccccveniienenn.
rawfitness += diff;

/I in this case the higher the rawfitness ( or accumulated differences ) the
/I lower the fitness hence the nextline.............cccccoeeene.

return (1000 - (unsigned int)rawfitness );
}

The EvaluateFitness() function is the problem the user wishes to solve. This problem is egald@fédess
allocatedthis is the returivalue whichalwayshas to be théype unsignednt though within theevolved code

the fitnesscan beany type. Irthe example the pointer to a genetic program is segtolml variable genetic
program (pgpGlobatihis issimply to allowthe ROOT macrogurther on in thecode. Automatically defined
functions have led to the translation mechaniooming lesshanelegant so macros adefinedand used.

The ROOT macro is equal to *(pgpGlobal->ppgHeader) which is in English the pointer to the first gene within
the first branch of the genetic program pgpGlobal (see Macros section for further information).

The nextsection of importantode isthe problem. Aange ofvaluesare considered from 0->9 in steps of 1.
Each isposed ashe question to the genetic program by settinggtbbalX tothatvalue. This globalX is the
only terminal in the genetic program. The ansiem the genetic program thencompared to the actual
answer and the difference between the two is the rawfitness.

At the final stage the rawfitness is the accumuladéftrence betweenthe actual answerand genetic
program's. The fitness we actually require is the simil&etyveerthe two answers not thdifferenceand so

the final returnvalue is subtracted frothe maximumpossible value. Therefore a gengitogram which

returns identical answers to the function will have an accumulated rawfitness of zero but a returned fitness of a
1000 the maximum possible.

/I Unfortunately because of ADFS and the need to alter the printing style of GPs
/I the GP operator << needs to know reside here.............cccccocviernnennnn.

/I This does not need to be understood just used by example if you wish..........
ostream& operator <<(ostreamé& os, GP *pgp )

if (pgp)
{

/I set up global genetic program variable to use ROOT macro defined above
/I this is useful for ADFs but not particularly helpful here
pgpGlobal = pgp;
/I prints out a GP simple really isnt here. The initial bracket is a hack to get
/I the total number of opening and closing number of brackets right.............
0s << "(" << ROOT << endl;

/I must return this value even though it isnt really needed.....................
return os;
}



In printing the Englistversion of a genetic program automatically defined functions hgaécomplicated
the codeand theoutput stream operator needs to be contained withiawbleing code. This operator takes a
pointer to a genetic program as an inpatalso a reference to a strearfihe genetic program ishecked to
seewhether it existand then thenacros araised toprint thedesired branch(es). There is no real need to
understandhow this functionworks (though C++ streams aveonderfulthings) as there are enougkamples

to show how this code operates and to develop your own.

SANTA FE TRAIL / ARTIFICIAL ANT PROBLEM

The Santa Fe Trail is an artificial simulation of a trail tteareates some tiie possible problems faced by a
real ant attempting tfllow the trail (Figure 4). Thetrail is placed onto a toriodajrid where an artificial
agent walking off the right edge will walk back onke left edgeandsimilarly with the topandbottom edges.
Thefiles for this problemcan befound inthe antdirectory if the compressed file was opened correctly if not
the files gpant.c¢ ant.ccandtrail.cc must be included in the compilation. Thdies call two headerfiles
ant.hppandtrail.hpp, the fileant.ini can be renamed for tlyp.ini of this problem.

The complexity ofthe trail increases depending dmow far along the trail an agent haswelled. The first
problemthe agenfaces isthe ability to make aurn when no more pheromone candetected in front of it.
Oncethis simpleproblem is solvedhe agent must thegvolvethe relatively more complex problem of how to
crossthe gap within the trailThese problenbecomemore difficult withthe ant having to aine pointevolve
the ability to make aknights move, two stepgorward and one step sidewards still without detecting a
pheromone.

The complex problems for the ant are mirrored by the simplicity of the fithess functittre fvail. Thefitness

of an agent is quite simpthe number ohew blockswith a pheromone scent stepped ontly agent. To
facilitate thisonce amagent steps on lalock with a pheromone this is dissipated,artshould not get &igh

score for moving backndforth on the sameiece oftraill The number oktepsthe agent can pasdy take

before it must finish was set to 600 though the total fithess score possible was only 91.

In summary, for aragent tosolvethe Santa Fe trail is mustolvethe ability to move forwardvhen it can
detect the trail and to search for the trail when it cannot.
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Figure 4 The Santa Fe Trail Grid




Representation Of An Artificial Ant

The artificial ant must be able to detect pheromaome tomove invarying directions within the environment.
The number of directionpossible tothe ant within theenvironment is limited to 4 so the behavioural
functions of the system are simplified

The ant must, obviously, be able to move forward when otrdiileand beable toturn towardstheleft or right
the trail turns in wither ofhose directions. These expressions require no arguinetitserefore the terminal

set of the artificial ant is simply specified as;
T( Trail Follower ) = { MoveForward, TurnRight, TurnLeft }

The function set iqually simple tospecify asthe only decisionwhich theant must make concerns the
absence onot of a pheromone directly in front tife ant. The standarfdnctions LISP function Prog2 and
Prog3 are included to increase the sequeatialplexity available tohe solutionevolved.The function set is

specified as;
F( Trail Follower ) = { IfPheremoneAhead, Prog2, Prog3 }

Therefore the InitialiseGPS() functionspecified as belowWhile theworld can be createdlobally the trail
will be changed through each evaluatipmocessand so iscreated in the EvaluateFitness() function. The
FITNESS defined type in this problem is simply an int.

void InitialiseGPS()

{
/I F(main) = [ IfFoodAhead, Prog2, Prog3 }
/I T(main ) = { TurnRight, TurnLeft, MoveForward ]
if (!( FunctionSets[0] = new FS( 3, 1,2,3, 2,2,3) ) ) ExitSystem( "InitialiseGPS()" );
if (!( TerminalSets[0] = new TS(3,4,5,6))) ExitSystem( "InitialiseGPS()" );
/I creates the world in which the ant resides. The trail is created seperately for each
evaluation process
CreateWorld();
/I note how as these stay constant they can be placed in the initialise block
Translate = TranslateROOT;
TranslatePrint = TranslatePrintROOT;

}

unsigned int EvaluateFitness( GP *pgp, int Evals )

/I set the rawfitness to 0
FITNESS rawfitness = 0;
/I set up global variable for ROOT macro
pgpGlobal = pgp;
/I As ant 'eats' trail as it is evaluated we need to create a new one each time
CreateTrail();
/I Reset the position of the artificial ant with the energy which is equal to Evals
ResetAnt( Evals );
/I while the ant still has energy evaluate it accumulating the fitness
while ( glbAnt.Energy >0) rawfitness += Translate( ROOT );
/'in this case the rawfitness is the fitness of the individual
return (unsigned int)rawfitness;

}

Designing Functions

Functions implicitly take arguments and a knowledge of the architecture is needed. As the examples show
below (from ant.cc) functions are sent a gene which is part of the genetic program. The gene sent has exactly
the correct brethren for the function i.e. a gene which is sent to Prog3 will have a neighbour (pgNext) and it

will also have a further neighbour (pgNext). For Prog3 each branch is evaluated and the fithess summated and
returned the function IfFoodAhead() returns the value of a particular branch dependant on the return value of
the boolean-like function IsFoodAhead().

/I Prog3 is a C/C++ port of the LISP function which summates branches and returns
/I the results. It is used to produce greater variety and ability in the genetic program
FITNESS Prog3( Gene *pg )
{

FITNESS sum = 0;

sum += Translate( pg );

sum += Translate( pg->pgNext );

sum += Translate( pg->pgNext->pgNext );

return sum;



FITNESS IfFoodAhead( Gene *pg )

/I if there is a food in the direction you are facing evaluate the first branch
if (IsFoodAhead() ) return Translate( pg );

/I otherwise evolve the second branch.................
else return Translate( pg->pgNext );

}

Designing Terminals

Terminals must return a fitness ( though this may be 0 ) and cannot take parameters. In writing terminals the
programmer can write code which produces side effects to the state of the environment or program. In the
example shown below (again taken from antlagnLeft()changes the direction of the ant (which is defined
globally as glbAnt) as a side effect of being called, the return value in this case is 0.

/I This is a function which operates only by side effects on the ant...............
int TurnLeft( void )

/I check to make sure there is energy left............ccoeeviiiiiinicnn.
if (glbAnt.Energy == 0 ) return 0;

/I turn left by adding 1 to moving and keeping within constraint of 4
glbAnt.Moving = ( glbAnt.Moving + 1) % 4;

/I decrease the energy of the ant............ccccooveiiiiiiiiiicicc,
glbAnt.Energy--;

/I turning can not add to the fitness so return @ 0...........cccoeceeiiieenns
return O;

}

LAWNMOWER PROBLEM

The paper which documentisis problem is in 'Advances in Genetic Programming’, Kimnear (Ed) as a
chapter called 'Scalable Learning in Genetic Programming using Automatic Function Definition' by John
Koza. | would like tahank JohrKozaandJames Rice fathe copy ofthe paper from which | hawteveloped

the code (in one evening betweehOpm and lam !). Théles for this problemcan befound inthe lawn
directory ifthe compressed file was opened correctlpat thefiles gplawn.c¢ mower.ccandlawn.ccmust be
included in the compilation. These files call two header fitesver.hppandlawn.hpp thefile lawn.ini can be
renamed for thgp.ini of this problem.

Consider a lawn upon which we have placed an autonomous mower whichvoiusthe ability to mow the
lawn. The lawn in question is sixty four grid toriodalworld. Using standard GP thebot would have to
evolve sixtyfour different moves but bysing automatically defined functiotise repeatable structure of the
environment can besed to produce shorter genetic programkis type of problem is alogous to thehess
problem with which automatically defined functiongre explained bubas the potential to do something
useful.

The root branch of a genetic prograan call itsADFO branch as a terminal and ieeDF1 branch as a
function which takes a single argument. An example of a root branclA3F1 ( ADF1 ( ADFO ) ) ). The
FITNESS definition foithe functionsand terminals of theystem is a vectowhich can has a range of 0 to 7
i.e. [3,5]. The functions available to the branches are: V8Av#wmtor addition oftwo arguments which
returns avalue whichhad themodulus by 8 operator applied to keepvithin range,PROG2the standard
LISP operatoandFROGwhich takes one argumeahd’'hops' to thevector given. The terminals areLEFT
turning themower left, MOW which jusmows forward one movand aset ofall vectors possiblevithin the
ranges given. ADF1 also has a further possible terminalaiue returned by itargument which in thisase
will always be ARGO. FROG, MOW and LEFT all decrease the 'energy’ of the rmadeount as one step in
the evaluation process.

The InitialiseGPS(and CleanUpGPS() functions dhe systemare simple tacode oncehis information has
been ascertainedNote that there arenow three functionand terminalsets for eactbranch of the genetic
program and the uniquealues ofthe functionand terminalonly need to beaunique within an individual
branch. The production of a set of real numbepagduced usinghe RandomReal option ithe terminal set
creation thevalue afterthis is the range of reahluesthe user requires (64). Thegaluesarestored in the
values above 32768 to stop conflict with the terminal and function set values.

void InitialiseGPS()

{
/I F(main) = { ADF1 , 1 argument }



/I T(main) = { ADFO }
if (I(FunctionSets[0] = new FS( 1, 1, 1)) ) ExitSystem( "Initialise");
if (/(TerminalSets[0] = new TS( 1, 2)) ) ExitSystem( "Initialise" );

/I F(adf0) = { VBA, PROG2, 2 argument each }
/I T(adf0) = { LEFT, MOW, Real }
if (/(FunctionSets[1] = new FS( 2, 1,2, 2,2)) ) ExitSystem( "Initialise");
if (/(TerminalSets[1] = new TS( 3, 3,4,RandomReal, 64 )) ) ExitSystem( "Initialise" );

/I F(adfl) = { VBA, FROG, PROG?2 , 2,1,2 arguments respectively }
/I T(adfl) = { ARGO, LEFT, MOW, Real }
if (/(FunctionSets[2] = new FS( 3, 1,2,3, 2,1,2)) ) ExitSystem( "Initialise");
if (/(TerminalSets[2] = new TS( 4, 4,5,6,RandomReal, 64 )) ) ExitSystem( "Initialise"
);
}

/I Now have to clean up 3 Function and Terminal Sets....
void CleanUpGPS()

for (inti=0;1i<3;i++)

delete FunctionSets[i];
delete TerminalSets]i;

}

The EvaluateFitness() is unusual in thieblem aghe evaluation of the genetic progralmesnot return a
value whichcan beused as a fithessThe fitness is instead calculated in the last linegumning apiece of
codewhich counts the number of grids with grass stifthis value is subtracted froihe maximunblocks of
grass (64). The Mower in the code is a global variable which is acted on by the operators of the system.

A further importantconcept in designing evolvingpde isthe consideration of what genetic programs can be
produced withthe functionand terminakets provided. Ithis case ifthe genetic program is made up entirely
of VBA functions the program will continue evaluating in an infildep asthe mowers 'energy’ i®nly
decreased by actually moving. Hernbe second line within the evaluatitwop which guards against this
eventuality.

unsigned int EvaluateFitness( GP *pgp, int Evals )

/I set up global variable necessary to get at ADF

pgpGlobal = pgp;
/I Reset the Mower........
Mower.x = 4;
Mower.y = 4;
Mower.Moving = 1; /I thats north
Mower.Energy = Evals;
/I grow some more grass. Quite a small lawn (8x8)
CreateLawn();
Translate = TranslateROOT;
while ( Mower.Energy )

{
Translate( ROOT );
/I gets nought if it don't move and also stop infinite loops v.important
if ( Mower.Energy == Evals ) return O;

}
return ( 64 - CheckLawn() );
}

The major component of automaticatigfined functions comes ithe translation of the root branch stsown
below. Ifthe genetic programhooses tdranslate théADFO branch the Translate function which is actually a
pointer to a function isnoved topoint at the function TranslateADRRBen this branch isvaluated using the
ADFO macro ( see the Macros sectlater in this report ).Oncethis branch hatbeen evaluatethe returning
vector isput in theglobal variable glbADFO sthe ADF1 branch caruseit. The Translatéunction pointer is
then shifted back to point ahe TranslateROOT functioand theglbADFO isreturned. The evaluation of
ADF1 branch is similar expect this returns a value called vReturn.
FITNESS TranslateROOT( Gene *pg )
{

switch ( pg->iValue )

case 1:
/I ADF1 ->one args

{
/I note | send the variable to ADF1 through glbADFO



Vector vReturn;
Translate = TranslateADF1;
vReturn = Translate( ADF1 );
Translate = TranslateROOT,;
return vReturn;

}
case 2:
{
Translate = TranslateADFO;
gIbADFO = Translate( ADFO ); // set up global variable...
Translate = TranslateROOT,;
return glbADFO;
default:
{

ExitSystem("TranslateMAIN" );
/I need to return something to stop warning though this will nerver be called
return glbADFO;
}

}

The TranslateADFO function is interestibgcause it makes usetbe real numbers attributes of gpc++. In
initialising the random real function the rangas set t®@4. All real numbers as already stated reside after
32768 so the firgbrocess should be to gbte actualvalue by simply subtracting 32768. A vectothgn set

up the first parameter being the modulus of the gefadi® by 8and the second ttdivision of thevalue by 8.
This gives a vector with the range O to 7 for each parameter.

FITNESS TranslateADFO( Gene *pg )
switch ( pg->iValue )

case 1: return VBA( pg->pgChild ); Il two args
case 2: return PROG2( pg->pgChild ); Il two args
case 3: return LEFT();

case 4: return MOW();

default:

1 and now the real number business, hope you like the way | have done it.....
unsigned char ch = pg->iValue - 32768; //set to begin at 0;
Vector v_harvey;
v_harvey.i = ch % 8; // set the number of real numbers to 64 and then%8
v_harvey.j=ch/8; /I |8 to get the two sets of values.
return v_harvey;

MACROS

When evaluating a genetic program the function should set it tdolsal variable genetic program
(pgpGlobal). This allows the use of macros which makie decision upon which branch of the genetic
program to evaluate a lot easier. TAIBF1 macro, used ithe lawnmower problem for instance, is equal to
*(pgpGlobal->ppgHeader + 2) which is English the pointer to the first gene within ttérd branch of the
genetic program pgpGlobal. When callithgs branch using macroshecomessimplistic just usélranslate(
ADF1). These macros can also be used to print out branches of the tree.

/I macros of how to use ADF structure
#define ROOT *(pgpGlobal->ppgHeader)
#define ADFO *(pgpGlobal->ppgHeader + 1)
#define ADF1 *(pgpGlobal->ppgHeader + 2)

ERRORS

There are commonly only three errors found in gpc++:
The allocation of memory reaches the limit and the system exits. This will tell you the function in which
the error occurred.
The gp.ini file has not been set correctly and crashes the system. Unfortunately as the system stands
safeguards against the wrong size of genetic program being used are impossible to implement.

The evolving code has the wrong number of functions and terminals defined in the translating procedures

or in the creation of the function and terminal sets.



FUTURE WORK

Work on gpc++has untilnow concentrated on developisgd debugging the 'microkernel' of the genetic
programming: the gene, gand population classesand theirdefinitions. On top of these generalised
definitions a number of crossovenutation or selection operataran beusedaltering the'style' ofthe genetic
programming run.

A major flaw is the difficulty in defining a particular problem. Each termaradfunction set must be defined
with unique valuesnd asolution to a previous problem may inéerpreted in a&ompletely differentvay in a
new problem.This could be produced byery large switch... case statement with each new probkeding
further operators being added as a furttese statement. Suclsgstem will haventrinsic timedelays due to
comparing all thecase statement@nd therewill be further problems when differentatatypesneed to be
returned.

One of the most interesting areas of artifi@ablutionary research, in my humble opinion, is in multiple
populationsand co-evolutionary environments. Ake systemstandsonly one population is definatiough |

do give preliminarycode ineval.ccinto how multiple populations could be evaluatdtbugh the method
described is very evaluation hungry.

As an ad addendum to this section here is a wish list for the future.
A syntactical measure for how similar two genetic programs are, which is also problem independent !
Demes which have their own particular genetic parameters.
Meta GP class which sits above the population judging convergence state of the system.

OTHER GENETIC PROGRAMMING |MPLEMENTATIONS

There are a number of implementations of genetic programming which cdoumeé in the genetic

programming archive (ftp://ftp.cc.utexas.edu /pub/genetic-programming/anded number abthers which

are in the hands of thmore financially astute members of our fraternifgach has it®wn advantages and
disadvantageand this is not thelace for a detailed analysis. So to mention justain order of chronology

more than anything else;

LISP Genetic Programming by John Koza (hacked by James Rice, | presume)
SGPC Simple Genetic Programming in C by Walter Tackett

GPQuick by Andrew Singleton ( detailed in BYTE Magazine Feb 1994 )
GP in CLOS by Peter Dudey ( A Common LISP implementation in 500 lines, very recent)
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A SvALL NOTE ON THE AUTHOR

Adam Fraser is currently (June 1994) moving intottiel and finalyear ofhis PhD inevolving co-operative
behaviours for autonomous agentshis, in no smallway, scares the living daylights out bfm. He has
resided on this plandor 23 yearsand hascontinually upheld thdelief that totake oneself seriously is the



ultimate sin for which there in no penance.July 95the research wilkome to arend and hevill be looking
for a job which allows time for freghinking, an internet link andvorking until theearly hours of the
morning, your suggestions on this matter will be most welcome.

His work in genetigorogramming startedbout 2 years ago withfaray into the Santa Fe trail / artificial ant
problem. Since then GP has become a major part of hisamarlassuch the kernetodehasbeen continually
refined, improvedand debugged. The versiondocumented inthis report haseen programmedhrough
numerous late nights (with MarfRadcliffe on Radio Onend caffeined earlymornings, the comments in
some blocks of code should definitely be read with this in mind.

He has numeroubobbies ofthe non-physicalariety and doesNOT want a nice house, wife and 2.4
children. He also reads too much......

COMMENTS

If you wish to make comments dhis document or theodethenplease feel free te-mail me on the address
shown on the front of the documenk®lease remember whenaking commentshat thisdocumentand the
codearework in progressand thatthey arealso free. Whilghis doesnot mean that mynisdemeanours are
any less it does mean that you should be gentle with me.

If you wish to send items such as research papeacksandfood parcels (or evemoney ?!?)then please

contact me using the address given below.
Adam Fraser,
Postgraduate Section,
Dept. Of Elec & Elec Eng.
Maxwell Building,
University Of Salford,
Salford,
M5 4WT,
United Kingdom
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AND LAST BUT NEVER LEAST

The genetic programming mailing list is currently thest productiveand useful lists | subscribe to. The
experts (GP Wizard8?) keeptheir eye onfoolish young babes (include myself in this category) as they
slowly movefrom crawling to walking in GP. If was toexplain to anyone whahe utopian dream of
academia was | would have to start with the example of the GP mailing list.

You can subscribe with an e-mail message to:
genetic-programming-request@cs.standford.edu

with the information below in the text message.

subscribe <Your Name>

The genetic programming archive contains code and papers and can be found at ftp.cc.utexas.edu in the
directory /pub/genetic-programming. There is a FAQ available in this directory. Enjoy...

Le fin.
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