
1	

Slides prepared by Rose Williams, Binghamton University

Chapter 7

Inheritance

© 2006 Pearson Addison-Wesley. All rights reserved 7-2

Introduction to Inheritance

•  Inheritance is one of the main techniques of
object-oriented programming (OOP)

•  Using this technique, a very general form of
a class is first defined and compiled, and
then more specialized versions of the class
are defined by adding instance variables
and methods
–  The specialized classes are said to inherit the

methods and instance variables of the general
class

© 2006 Pearson Addison-Wesley. All rights reserved 7-3

Introduction to Inheritance

•  Inheritance is the process by which a new class is
created from another class
–  The new class is called a derived class
–  The original class is called the base class

•  A derived class automatically has all the instance
variables and methods that the base class has, and
it can have additional methods and/or instance
variables as well

•  Inheritance is especially advantageous because it
allows code to be reused, without having to copy it
into the definitions of the derived classes

© 2006 Pearson Addison-Wesley. All rights reserved 7-4

Derived Classes

•  When designing certain classes, there is
often a natural hierarchy for grouping them
–  In a record-keeping program for the employees

of a company, there are hourly employees and
salaried employees

–  Hourly employees can be divided into full time
and part time workers

–  Salaried employees can be divided into those on
technical staff, and those on the executive staff

© 2006 Pearson Addison-Wesley. All rights reserved 7-5

Derived Classes

•  All employees share certain characteristics
in common
–  All employees have a name and a hire date
–  The methods for setting and changing names

and hire dates would be the same for all
employees

•  Some employees have specialized
characteristics
–  Hourly employees are paid an hourly wage,

while salaried employees are paid a fixed wage
–  The methods for calculating wages for these two

different groups would be different

© 2006 Pearson Addison-Wesley. All rights reserved 7-6

Derived Classes

•  Within Java, a class called Employee can
be defined that includes all employees

•  This class can then be used to define
classes for hourly employees and salaried
employees
–  In turn, the HourlyEmployee class can be

used to define a PartTimeHourlyEmployee
class, and so forth

2	

© 2006 Pearson Addison-Wesley. All rights reserved 7-7

A Class Hierarchy

© 2006 Pearson Addison-Wesley. All rights reserved 7-8

Derived Classes

•  Since an hourly employee is an employee, it
is defined as a derived class of the class
Employee
–  A derived class is defined by adding instance

variables and methods to an existing class
–  The existing class that the derived class is built

upon is called the base class
–  The phrase extends BaseClass must be

added to the derived class definition:
 public class HourlyEmployee extends Employee

© 2006 Pearson Addison-Wesley. All rights reserved 7-9

Derived Classes

•  When a derived class is defined, it is said to
inherit the instance variables and methods
of the base class that it extends
–  Class Employee defines the instance variables
name and hireDate in its class definition

–  Class HourlyEmployee also has these
instance variables, but they are not specified in
its class definition

–  Class HourlyEmployee has additional instance
variables wageRate and hours that are
specified in its class definition

© 2006 Pearson Addison-Wesley. All rights reserved 7-10

Derived Classes

•  Just as it inherits the instance variables of
the class Employee, the class
HourlyEmployee inherits all of its methods
as well
–  The class HourlyEmployee inherits the

methods getName, getHireDate, setName,
and setHireDate from the class Employee

–  Any object of the class HourlyEmployee can
invoke one of these methods, just like any other
method

© 2006 Pearson Addison-Wesley. All rights reserved 7-11

Derived Class (Subclass)

•  A derived class, also called a subclass, is
defined by starting with another already
defined class, called a base class or
superclass, and adding (and/or changing)
methods, instance variables, and static
variables
–  The derived class inherits all the public methods,

all the public and private instance variables, and
all the public and private static variables from the
base class

–  The derived class can add more instance
variables, static variables, and/or methods

© 2006 Pearson Addison-Wesley. All rights reserved 7-12

Inherited Members

•  A derived class automatically has all the
instance variables, all the static variables,
and all the public methods of the base class
–  Members from the base class are said to be

inherited
•  Definitions for the inherited variables and

methods do not appear in the derived class
–  The code is reused without having to explicitly

copy it, unless the creator of the derived class
redefines one or more of the base class methods

3	

© 2006 Pearson Addison-Wesley. All rights reserved 7-13

Parent and Child Classes

•  A base class is often called the parent class
–  A derived class is then called a child class

•  These relationships are often extended such
that a class that is a parent of a parent . . .
of another class is called an ancestor class
–  If class A is an ancestor of class B, then class B

can be called a descendent of class A

© 2006 Pearson Addison-Wesley. All rights reserved 7-14

Overriding a Method Definition

•  Although a derived class inherits
methods from the base class, it can
change or override an inherited
method if necessary
–  In order to override a method definition, a

new definition of the method is simply
placed in the class definition, just like any
other method that is added to the derived
class

© 2006 Pearson Addison-Wesley. All rights reserved 7-15

Changing the Return Type of an
Overridden Method

•  Ordinarily, the type returned may not be
changed when overriding a method

•  However, if it is a class type, then the
returned type may be changed to that of any
descendent class of the returned type

•  This is known as a covariant return type
–  Covariant return types are new in Java 5.0; they

are not allowed in earlier versions of Java

© 2006 Pearson Addison-Wesley. All rights reserved 7-16

Covariant Return Type

•  Given the following base class:
public class BaseClass
{ . . .
 public Employee getSomeone(int someKey)
 . . .

•  The following is allowed in Java 5.0:
public class DerivedClass extends BaseClass
{ . . .
 public HourlyEmployee getSomeone(int someKey)
 . . .

© 2006 Pearson Addison-Wesley. All rights reserved 7-17

Changing the Access Permission of an
Overridden Method

•  The access permission of an overridden
method can be changed from private in the
base class to public (or some other more
permissive access) in the derived class

•  However, the access permission of an
overridden method can not be changed from
public in the base class to a more restricted
access permission in the derived class

© 2006 Pearson Addison-Wesley. All rights reserved 7-18

Changing the Access Permission of an
Overridden Method

•  Given the following method header in a base case:
private void doSomething()

•  The following method header is valid in a derived
class:
public void doSomething()

•  However, the opposite is not valid
•  Given the following method header in a base case:

public void doSomething()

•  The following method header is not valid in a
derived class:
private void doSomething()

4	

© 2006 Pearson Addison-Wesley. All rights reserved 7-19

Pitfall: Overriding Versus Overloading

•  Do not confuse overriding a method in a
derived class with overloading a method
name
–  When a method is overridden, the new method

definition given in the derived class has the
exact same number and types of parameters as
in the base class

–  When a method in a derived class has a different
signature from the method in the base class, that
is overloading

–  Note that when the derived class overloads the
original method, it still inherits the original
method from the base class as well

© 2006 Pearson Addison-Wesley. All rights reserved 7-20

The final Modifier

•  If the modifier final is placed before
the definition of a method, then that
method may not be redefined in a
derived class

•  It the modifier final is placed before
the definition of a class, then that class
may not be used as a base class to
derive other classes

© 2006 Pearson Addison-Wesley. All rights reserved 7-21

The super Constructor

•  A derived class uses a constructor from the base
class to initialize all the data inherited from the base
class
–  In order to invoke a constructor from the base class, it

uses a special syntax:
 public derivedClass(int p1, int p2, double p3)
 {
 super(p1, p2);
 instanceVariable = p3;
 }

–  In the above example, super(p1, p2); is a call to the
base class constructor

© 2006 Pearson Addison-Wesley. All rights reserved 7-22

The super Constructor

•  A call to the base class constructor can
never use the name of the base class, but
uses the keyword super instead

•  A call to super must always be the first
action taken in a constructor definition

•  An instance variable cannot be used as an
argument to super

© 2006 Pearson Addison-Wesley. All rights reserved 7-23

The super Constructor

•  If a derived class constructor does not
include an invocation of super, then the no-
argument constructor of the base class will
automatically be invoked
–  This can result in an error if the base class has

not defined a no-argument constructor
•  Since the inherited instance variables

should be initialized, and the base class
constructor is designed to do that, then an
explicit call to super should always be used

© 2006 Pearson Addison-Wesley. All rights reserved 7-24

The this Constructor

•  Within the definition of a constructor for a
class, this can be used as a name for
invoking another constructor in the same
class
–  The same restrictions on how to use a call to
super apply to the this constructor

•  If it is necessary to include a call to both
super and this, the call using this must
be made first, and then the constructor that
is called must call super as its first action

5	

© 2006 Pearson Addison-Wesley. All rights reserved 7-25

The this Constructor

•  Often, a no-argument constructor uses this to
invoke an explicit-value constructor
–  No-argument constructor (invokes explicit-value

constructor using this and default arguments):
public ClassName()
{
 this(argument1, argument2);
}

–  Explicit-value constructor (receives default values):
public ClassName(type1 param1, type2 param2)
{
 . . .
}

© 2006 Pearson Addison-Wesley. All rights reserved 7-26

The this Constructor

public HourlyEmployee()
{
 this("No name", new Date(), 0, 0);
}

•  The above constructor will cause the
constructor with the following heading to be
invoked:
public HourlyEmployee(String theName,
Date theDate, double theWageRate,
double theHours)

© 2006 Pearson Addison-Wesley. All rights reserved 7-27

Tip: An Object of a Derived Class Has
More than One Type

•  An object of a derived class has the type of
the derived class, and it also has the type of
the base class

•  More generally, an object of a derived class
has the type of every one of its ancestor
classes
–  Therefore, an object of a derived class can be

assigned to a variable of any ancestor type

© 2006 Pearson Addison-Wesley. All rights reserved 7-28

Tip: An Object of a Derived Class Has
More than One Type

•  An object of a derived class can be plugged
in as a parameter in place of any of its
ancestor classes

•  In fact, a derived class object can be used
anyplace that an object of any of its
ancestor types can be used

•  Note, however, that this relationship does
not go the other way
–  An ancestor type can never be used in place of

one of its derived types

© 2006 Pearson Addison-Wesley. All rights reserved 7-29

Pitfall: The Terms "Subclass" and
"Superclass"

•  The terms subclass and superclass are
sometimes mistakenly reversed
–  A superclass or base class is more general and

inclusive, but less complex
–  A subclass or derived class is more specialized,

less inclusive, and more complex
•  As more instance variables and methods are added,

the number of objects that can satisfy the class
definition becomes more restricted

© 2006 Pearson Addison-Wesley. All rights reserved 7-30

An Enhanced StringTokenizer Class

•  Thanks to inheritance, most of the standard
Java library classes can be enhanced by
defining a derived class with additional
methods

•  For example, the StringTokenizer class
enables all the tokens in a string to be
generated one time
–  However, sometimes it would be nice to be able

to cycle through the tokens a second or third
time

6	

© 2006 Pearson Addison-Wesley. All rights reserved 7-31

An Enhanced StringTokenizer Class

•  This can be made possible by creating a derived
class:
–  For example, EnhancedStringTokenizer can inherit

the useful behavior of StringTokenizer
–  It inherits the countTokens method unchanged

•  The new behavior can be modeled by adding new
methods, and/or overriding existing methods
–  A new method, tokensSoFar, is added
–  While an existing method, nextToken, is overriden

© 2006 Pearson Addison-Wesley. All rights reserved 7-32

An Enhanced StringTokenizer Class
(Part 1 of 4)

© 2006 Pearson Addison-Wesley. All rights reserved 7-33

An Enhanced StringTokenizer Class
(Part 2 of 4)

© 2006 Pearson Addison-Wesley. All rights reserved 7-34

An Enhanced StringTokenizer Class
(Part 3 of 4)

© 2006 Pearson Addison-Wesley. All rights reserved 7-35

An Enhanced StringTokenizer Class
(Part 4 of 4)

© 2006 Pearson Addison-Wesley. All rights reserved 7-36

Encapsulation and Inheritance Pitfall: Use of
Private Instance Variables from the Base
Class
•  An instance variable that is private in a base class

is not accessible by name in the definition of a
method in any other class, not even in a method
definition of a derived class
–  For example, an object of the HourlyEmployee class

cannot access the private instance variable hireDate by
name, even though it is inherited from the Employee base
class

•  Instead, a private instance variable of the base
class can only be accessed by the public accessor
and mutator methods defined in that class
–  An object of the HourlyEmployee class can use the
getHireDate or setHireDate methods to access
hireDate

7	

© 2006 Pearson Addison-Wesley. All rights reserved 7-37

Encapsulation and Inheritance Pitfall: Use of
Private Instance Variables from the Base
Class

•  If private instance variables of a class were
accessible in method definitions of a derived
class, then anytime someone wanted to
access a private instance variable, they
would only need to create a derived class,
and access it in a method of that class
–  This would allow private instance variables to be

changed by mistake or in inappropriate ways (for
example, by not using the base type's accessor
and mutator methods only)

© 2006 Pearson Addison-Wesley. All rights reserved 7-38

Pitfall: Private Methods Are Effectively
Not Inherited

•  The private methods of the base class are like
private variables in terms of not being directly
available

•  However, a private method is completely
unavailable, unless invoked indirectly
–  This is possible only if an object of a derived class invokes

a public method of the base class that happens to invoke
the private method

•  This should not be a problem because private
methods should just be used as helping methods
–  If a method is not just a helping method, then it should be

public, not private

© 2006 Pearson Addison-Wesley. All rights reserved 7-39

Protected and Package Access

•  If a method or instance variable is modified by
protected (rather than public or private),
then it can be accessed by name
–  Inside its own class definition
–  Inside any class derived from it
–  In the definition of any class in the same package

•  The protected modifier provides very weak
protection compared to the private modifier
–  It allows direct access to any programmer who defines a

suitable derived class
–  Therefore, instance variables should normally not be

marked protected

© 2006 Pearson Addison-Wesley. All rights reserved 7-40

Protected and Package Access

•  An instance variable or method definition
that is not preceded with a modifier has
package access
–  Package access is also known as default or

friendly access
•  Instance variables or methods having

package access can be accessed by name
inside the definition of any class in the same
package
–  However, neither can be accessed outside the

package

© 2006 Pearson Addison-Wesley. All rights reserved 7-41

Protected and Package Access

•  Note that package access is more
restricted than protected
– Package access gives more control to the

programmer defining the classes
– Whoever controls the package directory

(or folder) controls the package access

© 2006 Pearson Addison-Wesley. All rights reserved 7-42

Access Modifiers

8	

© 2006 Pearson Addison-Wesley. All rights reserved 7-43

Pitfall: Forgetting About the Default
Package

•  When considering package access, do not
forget the default package
–  All classes in the current directory (not belonging

to some other package) belong to an unnamed
package called the default package

•  If a class in the current directory is not in
any other package, then it is in the default
package
–  If an instance variable or method has package

access, it can be accessed by name in the
definition of any other class in the default
package (i.e., it acts a lot like “public”)

© 2006 Pearson Addison-Wesley. All rights reserved 7-44

Pitfall: A Restriction on Protected
Access

•  If a class B is derived from class A, and
class A has a protected instance variable n,
but the classes A and B are in different
packages, then the following is true:
–  A method in class B can access n by name (n is

inherited from class A)
–  A method in class B can create a local object, P,

of itself, which can access P.n by name (again, n
is inherited from class A)

© 2006 Pearson Addison-Wesley. All rights reserved 7-45

Pitfall: A Restriction on Protected
Access

•  However, if a method in class B creates an object,
O, of class A, it can not access O.n by name
–  A class knows about its own inherited variables and

methods
–  However, it cannot directly access any instance variable or

method of an ancestor class unless they are public
–  Therefore, B can access n whenever it is used as an

instance variable of B, but B cannot access n when it is
used as an instance variable of A

•  This is true if A and B are not in the same package
–  If they were in the same package there would be no

problem, because protected access implies package
access

Example of this Restriction

•  A and B in different packages, n is protected
•  class B extends A …

–  public void fun() {
•  A otherObj = new A();
•  otherObj.n // Is ILLEGAL. Can’t access otherObj’s n

// even though otherObj and this are in strongly related classes

•  this.n // Is legal, because B inherits n
•  B yetAnotherObj = new B();
•  yetAnotherObj.n // Is legal

© 2006 Pearson Addison-Wesley. All rights reserved 7-46

© 2006 Pearson Addison-Wesley. All rights reserved 7-47

Tip: "Is a" Versus "Has a"

•  A derived class demonstrates an "is a"
relationship between it and its base class
–  Forming an "is a" relationship is one way to

make a more complex class out of a simpler
class

–  For example, an HourlyEmployee "is an"
Employee

–  HourlyEmployee is a more complex class
compared to the more general Employee class

© 2006 Pearson Addison-Wesley. All rights reserved 7-48

Tip: "Is a" Versus "Has a"

•  Another way to make a more complex class
out of a simpler class is through a "has a"
relationship
–  This type of relationship, called composition,

occurs when a class contains an instance
variable of a class type

–  The Employee class contains an instance
variable, hireDate, of the class Date, so
therefore, an Employee "has a" Date

9	

© 2006 Pearson Addison-Wesley. All rights reserved 7-49

Tip: "Is a" Versus "Has a"

•  Both kinds of relationships are
commonly used to create complex
classes, often within the same class
– Since HourlyEmployee is a derived

class of Employee, and contains an
instance variable of class Date, then
HourlyEmployee "is an" Employee
and "has a" Date

© 2006 Pearson Addison-Wesley. All rights reserved 7-50

Tip: Static Variables Are Inherited

•  Static variables in a base class are
inherited by any of its derived classes

•  The modifiers public, private, and
protected, and package access
have the same meaning for static
variables as they do for instance
variables

© 2006 Pearson Addison-Wesley. All rights reserved 7-51

Access to a Redefined Base Method

•  Within the definition of a method of a derived class,
the base class version of an overridden method of
the base class can still be invoked
–  Simply preface the method name with super and a dot
public String toString()
{
 return (super.toString() + "$" + wageRate);
}

•  However, using an object of the derived class
outside of its class definition, there is no way to
invoke the base class version of an overridden
method

© 2006 Pearson Addison-Wesley. All rights reserved 7-52

You Cannot Use Multiple supers

•  It is only valid to use super to invoke a method
from a direct parent
–  Repeating super will not invoke a method from some

other ancestor class
•  For example, if the Employee class were derived

from the class Person, and the HourlyEmployee
class were derived form the class Employee , it
would not be possible to invoke the toString
method of the Person class within a method of the
HourlyEmployee class
super.super.toString() // ILLEGAL!

© 2006 Pearson Addison-Wesley. All rights reserved 7-53

The Class Object

•  In Java, every class is a descendent of the
class Object
–  Every class has Object as its ancestor
–  Every object of every class is of type Object, as

well as being of the type of its own class
•  If a class is defined that is not explicitly a

derived class of another class, it is still
automatically a derived class of the class
Object

© 2006 Pearson Addison-Wesley. All rights reserved 7-54

The Class Object

•  The class Object is in the package
java.lang which is always imported
automatically

•  Having an Object class enables methods
to be written with a parameter of type
Object
–  A parameter of type Object can be replaced by

an object of any class whatsoever
–  For example, some library methods accept an

argument of type Object so they can be used
with an argument that is an object of any class

10	

© 2006 Pearson Addison-Wesley. All rights reserved 7-55

The Class Object

•  The class Object has some methods that every
Java class inherits
–  For example, the equals and toString methods

•  Every object inherits these methods from some
ancestor class
–  Either the class Object itself, or a class that itself

inherited these methods (ultimately) from the class
Object

•  However, these inherited methods should be
overridden with definitions more appropriate to a
given class
–  Some Java library classes assume that every class has its

own version of such methods

© 2006 Pearson Addison-Wesley. All rights reserved 7-56

The Right Way to Define equals

•  Since the equals method is always
inherited from the class Object, methods
like the following simply overload it:
public boolean equals(Employee otherEmployee)
{ . . . }

•  However, this method should be overridden,
not just overloaded:
public boolean equals(Object otherObject)
{ . . . }

© 2006 Pearson Addison-Wesley. All rights reserved 7-57

The Right Way to Define equals

•  The overridden version of equals must
meet the following conditions
–  The parameter otherObject of type Object

must be type cast to the given class (e.g.,
Employee)

–  However, the new method should only do this if
otherObject really is an object of that class,
and if otherObject is not equal to null

–  Finally, it should compare each of the instance
variables of both objects

© 2006 Pearson Addison-Wesley. All rights reserved 7-58

A Better equals Method for the Class
Employee

public boolean equals(Object otherObject)
{
 if(otherObject == null)
 return false;
 else if(getClass() != otherObject.getClass())
 return false;
 else
 {
 Employee otherEmployee = (Employee)otherObject;
 return (name.equals(otherEmployee.name) &&
 hireDate.equals(otherEmployee.hireDate));
 }
}

© 2006 Pearson Addison-Wesley. All rights reserved 7-59

Tip: getClass Versus instanceof

•  Many authors suggest using the instanceof
operator in the definition of equals
–  Instead of the getClass() method

•  The instanceof operator will return true if the
object being tested is a member of the class for
which it is being tested
–  However, it will return true if it is a descendent of that

class as well
•  It is possible (and especially disturbing), for the
equals method to behave inconsistently given this
scenario

© 2006 Pearson Addison-Wesley. All rights reserved 7-60

Tip: getClass Versus instanceof

•  Here is an example using the class Employee
. . . //excerpt from bad equals method:
else if(!(otherObject instanceof Employee))
 return false; . . .

•  Now consider the following:
Employee e = new Employee("Joe", new Date());
HourlyEmployee h = new
 HourlyEmployee("Joe", new Date(),8.5, 40);
boolean testH = e.equals(h); // true!
boolean testE = h.equals(e); // false

11	

© 2006 Pearson Addison-Wesley. All rights reserved 7-61

Tip: getClass Versus instanceof

•  testH will be true, because h is an
Employee with the same name and hire
date as e even though h and e are of
different classes

•  However, testE will be false, because e
is not an HourlyEmployee, so
HourlyEmployee.equals()immediately
returns false.

•  Note that this problem would not occur if the
getClass() method were used instead, as
in the previous equals method example

© 2006 Pearson Addison-Wesley. All rights reserved 7-62

instanceof and getClass

•  Both the instanceof operator and the
getClass() method can be used to check
the class of an object

•  However, the getClass() method is more
exact
–  The instanceof operator simply tests the

class of an object
–  The getClass() method used in a test with ==

or != tests if two objects were created with the
same class

© 2006 Pearson Addison-Wesley. All rights reserved 7-63

The instanceof Operator

•  The instanceof operator checks if
an object is of the type given as its
second argument
Object instanceof ClassName
– This will return true if Object is of type
ClassName, and otherwise return false

– Note that this means it will return true if
Object is the type of any descendent
class of ClassName

© 2006 Pearson Addison-Wesley. All rights reserved 7-64

The getClass() Method

•  Every object inherits the same getClass()
method from the Object class
–  This method is marked final, so it cannot be

overridden
•  An invocation of getClass() on an object

returns a representation only of the class
that was used with new to create the object
–  The results of any two such invocations can be

compared with == or != to determine whether or
not they represent the exact same class
(object1.getClass() == object2.getClass())

