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Although supply disruption sounds very rare, it happens all the time. Besides those factors, such as

weather, labor strike, terrorism, when the manufacturer production scale is very large, such as shampoo

produced by P&G, those small retailer may not get their order at all due to randomness of manufacture

and their small scale. Song and Zipkin [2] models this situation as discrete queueing system. Since those

small retailer cannot get information of manufacture process whether it occurs disruption or manufacturer

randomness, we can approximate the whole system as a disruption model.

The most research done so far assumes constant disruption rate and recover rate. Under constant

disruption rate assumption, people like Parlar and Perry [1] studies how it affects those classic inventory

policies, such as (r, Q) policy. Synder [3] provides a tight approximation for the lost sales EOQ model

with disruption(EOQD). Song and Zipkin [2] study the case where supply system can be modelled as a

discrete time Markov chain. After reducing state space, they shows the value of knowing information of

supply system. Recently Tomlin and Synder study the supply system with multiple fail rates following

discrete time Markov chain. They shows the state dependent order up level will gain significant saving

again constant order up level policy.

In this paper, we consider the availability of one single supplier following continuous time Markov chain

and one retailer facing Poisson demand. The events, such as adverse weather, strike, machine breakdown,

congestion of orders from all retailers the supplier encounters, can cause the supplier incapable to provide

its product to one or more retailers. Usually the probabilities of having those events as well as the

Poisson-distributed demand received by the retailer are time dependent. We model this problem as two

dimension CTMC and solve Kolmogorov CTMC differential equations numerically to acquire total cost

under certain ordering policy. We propose several control forms of ordering policy for the retailer, which

can be characterized into two categories. One is using time independent order quantity, and the other is

real-time order quantity varying by the time.

We compare the those proposed policies under different cost, demand, disruption parameters by
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extensive computational experiments. The benefit of real-time order policy is investigate. At the same

time, disruption is a low probability event. It is not easy to get accurate estimation of those time

dependent parameters. The robustness of real-time policy is examined, and we find the real-time policy

can balance optimality and robustness well if the parameters of control is set properly.

In section 1, we provide problem formulation and proposed policies. In section 2, the extensive of

computational experiments on the benefit of real time order policy is presented. In section 3 , the

relationship of parameters of optimal solution under certain control policy is studied. In section 4, the

robustness investigation of policies is carried out. In section 5, we give the suggestion when to use real

time ordering control policy.

1 Problem formulation and proposed policies

We suppose the supplier has two states. One is ’up’ and the other is ’down’. When supplier is at ’up’

state, it has ample inventory for its retailers. Otherwise the supplier has nothing to supply until its state

switch from ’down’ to ’up’. When the supplier is at ’up’/’down’, the time to switch to ’down’/’up’ is

exponentially distributed. The demand faced by the retailer is Poisson distributed. The retailer uses

the zero inventory ordering policy. The leadtime is 0 condition on ’up’ state of the supplier. When the

supplier is at ’down’ state, the retailer will place its order right after the supplier recovers. Unsatisfied

demand is lost. Based on these assumptions, Figure 1 shows CTMC diagram for the problem. The

number in the figure denotes the inventory level at retailer. ’U’/’D’ denotes ’up’/’down’ state at supplier.

Since the leadtime is 0 condition on ’U’, (0, U) cannot be achieved unless Q = 0.

We use the cosine form to approximate time dependent fail rate and demand rate. It is easy to make

cost parameters and repair rate time dependent. But it is reasonable and convenient to fix it constant

over time.

In order to demonstrate the problem formulation, we introduce the following notation1.
1K, h, p, fr can be time varying without any difficulty. But we let them constant over time in our experiments.
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Figure 1: CTMC diagram

Parameters Definition Basic setting

K Fixed cost 31

h Holding cost 1

p Stockout cost 11

fr Repair rate 12

fb Average fail rate 1

fRA Relative amplitude of fail rate 0.9

fPH Phase of fail rate 0

λ Average demand rate 100

dRA Relative amplitude of demand rate 0

dPH Phase of demand rate 0

λ(t) = λ(1− dRA cos(2π(t + dPH))) Demand rate function

IL(t) Inventory level. It is a random variable

δ(x): lim∆t→0

∫ t+∆t

t
δ(x)dx = 1 when t > 0 and 0 otherwise

Q(t): Our decision variable, real time order amount when inventory level hits zero.

Our expected long run average total cost is equal to,

C(T ) = E[
∫ T

0

{h[IL(t)]+ + p[1− IL(t)]+λ(t) + K(Pr(1,′ U ′, t)λ(t) + Pr(0,′D′, t)fb(t))dt]

3



where

Pr(IL(t)) = Pr(IL,′ U ′) + Pr(IL,′D′)

If we are given a specific form of Q(t) and corresponding parameters, we can solve Kolmogorov CTMC

differential equations numerically to get distribution of IL(t), Pr(1,′ U ′, t) and Pr(0,′D′, t). By switching

expectation and integral sign, we can get total cost until time T.

Since we don’t know what is the optimal form for the real time ordering policy, we propose several

ordering policy which can be characterized by two perspectives. One is whether order policy is real time

or not. Real time means order quantity reflects time dependent parameters. That is, Q(t) 6= C where C is

a constant. The other is whether the process of generating Q(t) involving Kolmogorov CTMC differential

equations. We call it ’optimization’ or ’non-Optimization’

Time-Independent Real time

Non-Optimization EOQ EOQ-PSA & EOQ-PSA-t

EOQD EOQD-PSA & EOQD-PSA-t

Optimization Q-nt Q-t

Q-t-K

EOQ-PSA-t-ph & EOQD-PSA-t-ph

EOQ policy: Q(t) = EOQ(t) =
√

2Kλ
h .

EOQD policy: Use optimal Q derived from EOQD model under average value of fail and demand

rate.

Q-nt policy: Optimal Q among all C where Q(t) = C.

EOQ-PSA policy: Q(t) = EOQPSA(t) =
√

2Kλ(t)
h .

EOQ-PSA-t policy:

Q(t) = EOQPSA−t(t) =
Max(EOQPSA(t)) + Min(EOQPSA(t))

2

(1− Max(EOQPSA(t))−Min(EOQPSA(t))
Max(EOQPSA(t))−Min(EOQPSA(t))

cos(2πt))

EOQD-PSA policy: Use optimal Q derived from EOQD model under the value of fail and demand

rate at current time.

EOQ-PSA-t policy:

Q(t) = EOQDPSA−t(t) =
Max(EOQDPSA(t)) + Min(EOQDPSA(t))

2

(1− Max(EOQDPSA(t))−Min(EOQDPSA(t))
Max(EOQDPSA(t))−Min(EOQDPSA(t))

cos(2πt))

Q-t policy:

Q(t) = arg min
Q(t)=Q(1−RA cos(2π(t+α))

(C(T ))
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Q-t-K policy:

Q(t) = arg min
Q(t)=

∑K

k=1
Q(1−RAk cos(2πk(t+αk))

(C(T ))

EOQ-PSA-t-ph policy:

Q(t) = arg min
Q(t)=EOQP SA−t(t+α)

(C(T ))

EOQD-PSA-t-ph policy:

Q(t) = arg min
Q(t)=EOQDP SA−t(t+α)

(C(T ))

Synder shows EOQD outperforming EOQ under disruption. We won’t consider those EOQ type

policies except EOQ itself. Q-t-K policy should be better than Q-t policy since it allows more flexibility.

But it involves more dimensions of decision space, so we won’t consider it in this paper and we suspect

benefit of increasing K to K + 1 is diminishing very fast.

2 The benefit of real time ordering policy

For those policies involving optimization over Kolmogorov CTMC differential equations, it is hard to get

optimal solution even if the form of Q(t) is given. There are two ways to find ’optimal’ solution. One

is to use exhaustive lattice search. The other is to use existent nonlinear solver to get it done. Since

it is obvious that when relative amplitude and Q approach to ±∞, C(T ) will approach ∞ too, and

Q(α) = Q(α + 1), we can use unconstrained optimization approach. We choose lattice search to get all

the results shown in the latter figures whenever optimization is needed. And we will talk about how to

use Matlab optimization solver to get the satisfied result at appendix.

Our basic setting is K = 31, p = 11, h = 1, pr = 12, fr = 1, fRA = 0.9, fPH = 0, λ = 100,

dRA = 0, dPH = 0. For the Q-nt policy, we compute all Q from 0.8EOQ+EOQD
2 to 1.5EOQ+EOQD

2

with increment 0.1EOQ+EOQD
2 . For Q-t policy, we let RA from 0 to 0.5 with increment 0.1, α from 0

to 0.9 with increment 0.1, Q from 0.8EOQ+EOQD
2 to 1.5EOQ+EOQD

2 with increment 0.1EOQ+EOQD
2 . For

EOQD-PSA-t-ph policy, we let α from 0 to 0.9 with increment 0.1.

In the following subsections, we use two kinds of plots. One is absolute total cost under optimal

control with regard to different ordering policy by changing the corresponding parameters. The other is

relative percentage cost increase by using other policies instead of Q-t policy.

2.1 Changing Fixed Cost and Stockout Cost

We choose fixed cost from 1 to 101 with increment 10. From Fig.2, we can see total cost by using EOQ

policy is worse than EOQD especially when fixed cost is low. That is because EOQ didn’t adjust to
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Figure 2: The total cost under different policies when fixed cost changes

stockout cost due to fixed cost. The lower fixed cost is, the more frequent ordering EOQ policy will be,

so that the higher stockout cost EOQ policy will bring. When fixed cost is high enough compared to

stockout cost, EOQ is close to EOQD. In our computation example, if we keep our fail rate is constant

over time, the probability of supplier at down state when the retailer places its order is 1/13, expected

inspected length down period is 1/12 due to exponential duration, and the expect demand per cycle is

100. So the total expect stockout per cycle is 100/156 ≈ 0.64. So when fixed cost is above 21, the relative

ratio of fixed cost to stockout cost is above 32 where we can almost ignore the component of sotckout

cost. Also from Fig.2, Q-nt policy is close to EOQD policy, that is because total cost of Q-nt policy

is only affect by the average fail rate not by the fluctuation of fail rate. Since our demand is random

variable, that means probability of inventory hitting zero at any time is equivalent. So EOQD is a very

tight approximation of optimal Q-nt policy even if the fail rate is fluctuation.

EOQD-PSA and EOQD-PSA-t policy are worse than EOQD policy at some region. The reason is

order amount under this two policies varies over time, so the probability of inventory hitting zero varies

over time too. If the order quantity isn’t adjusted according to the phase, it may be worse than EOQD

policy sometimes. At the same time, EOQD-PSA policy is close to EOQD-PSA-t policy. From the Fig.3,

we can see the their order amounts almost overlap.

EOQD-PSA-t-ph policy is close to the optimal optimal Q-t policy. The reason is that there lays a

very flat canyon in the Fig.4. In this figure, the RA is fixed and for any reasonable Q, we can find a

corresponding phase, such that its cost is close the minimal cost. Like EOQ model, the total cost function

is really insensitive near optimal solution.

We choose stockout cost from 1 to 51 with increment 5. The result is shown in Fig.5. Opposite to

the fixed cost, when stockout cost increases, EOQ policy becomes worse due to ratio of fixed cost to
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Figure 5: The total cost under different policies when stockout cost changes
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Figure 6: The relationship between EOQD-PSA and EOQD-PSA-t policy when stockout cost is 51

stockout cost decreasing. Similarly, EOQD is still close to optimal Q-nt policy. But EOQD-PSA and

EOQD-PSA-t is always worse than EOQD policy. Compared to EOQD-PSA-t-ph policy, it is clear that

getting right phase is critical. EOQD-PSA-t performs worse than EOQD-PSA policy when stockout cost

increase. In Fig.6, the order quantity of EOQD-PSA-t policy just a little bit far away from EOQD-PSA

policy compared to Fig.3. Compared to the fact that EOQD-PSA-t-ph is very close to optimal Q-t

policy, we suspect that by adjusting the phase for EOQD-PSA policy directly, we can get lower cost than

employing optimal Q-t policy.

The benefit of using Q-t policy increases by increasing stockout cost. When stockout is 51, the saving

climbs to 15%.

8



0 2 4 6 8 10 12
80

85

90

95

100

105

110

115

120

125

130
The optimality of different policies

Average Fail Rate

T
ot

al
 C

os
t

EOQD−PSA−t policy
EOQD−PSA policy
EOQ policy
EOQD policy
Q−nt policy
EOQD−PSA−t−ph policy
Q−t policy

0 2 4 6 8 10 12
0

5

10

15

20

25

30
Cost increase percentage of different policies compared to the Q−t policy

Average Fail Rate

C
os

t i
nc

re
as

e 
pe

rc
en

ta
ge

EOQD−PSA−t policy
EOQD−PSA policy
EOQ policy
EOQD policy
Q−nt policy
EOQD−PSA−t−ph policy
0

Figure 7: The total cost under different policies when average fail rate changes
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Figure 8: The total cost under different policies when repair rate changes

2.2 Changing Average Fail Rate and Repair Rate

We let average fail rate from 1 to 12 with increment 1. The result is shown in Fig.7. As we expected,

EOQ becomes worse due to more frequency of disruption. EOQD-PSA and EOQD-PSA-t policy are

worse than EOQD policy in the most cases. And difference between EOQD-PSA and EOQD-PSA-t

increases by increasing average fail rate. Since EOQD-PSA-t-ph policy is very close optimal Q-t policy

we find, we suspect using EOQD-PSA adjusted by the phase may give better result.

We let repair rate from 1 to 12 with increment 1. The result is shown in Fig.8. There is no clear

patten of benefit of optimal Q-t policy. In general, the benefit of optimal Q-t policy vesus EOQD policy

a little bit increase by decrease the repair rate. The spike at repair rate equal to 2 may be caused by

lattic search. It should a better solution for Q-t policy than we find.
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From Fig.7, we can see the total cost increase almost linear. From Fig.8, we can see the increase

of total cost is not significant when repair rate decreases from 12 at the beginning. But it increases

rapidly when the repair rate is more close to 0. From this experiment, we conjecture that lower frequent

but serverer disruption is more cost than higher frequent but minor disruption. And suppose there is

certain budget to improve the reliability of the whole system, it is interesting to learn how to allocate

the resource.

2.3 Changing Relative Amplitude of Fail Rate and Demand rate
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Figure 9: The total cost under different policies when relative amplitude of fail rate changes

We change the relative amplitude of both fail rate and demand rate from 0.1 to 0.9. The results are

shown Fig.9 and Fig.10. As we reason in the section, the relative amplitude of fail rate shouldn’t affect

the total cost under any time independent ordering policy as long as the demand is constant over time.

In Fig.9, the total cost of EOQ, EOQD, optimal Q-nt policy is constant. In contrast, the total cost under

EOQD-PSA-t-ph policy and optimal Q-t policy is going down when fluctuation of fail rate is increase.

That is because by adjusting order quantity over time, those two policies tend to let action of placing at

bottom of fail rate. So the more fluctuation the fail rate is, the lower bottom of fail rate and the more

benefit of Q-t policy will be.

When demand fluctuates, the cost of EOQ and EOQD isn’t constant shown in the Fig.10. That’s

because the time of inventory level hitting zero is not equally like. When demand and fail rate has the

same phase, the cost of EOQ and EOQD is increasing. If the demand phase has 0.5 lag, the cost of EOQ

and EOQD may be decreasing.

It is strange that the cost of EOQD-PSA-t-ph policy also increases by the relative amplitude of

demand rate, but optimal Q-t policy cause the total cost decrease at the same time.
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Figure 10: The total cost under different policies when relative amplitude of demand rate changes

2.4 Changing Phase of Demand Rate

We change phase of demand rate from 0 to 0.9 with increment 0.1. The result is shown in the Fig.11.

From the figure, we can see the total cost under optimal Q-t policy reaches lowest point when demand

phase is 0.3 lag and highest point when demand phase is 0.8. The ratio of difference to the average is

around 15%. Like the relationship of sunshine with heat, the actual disruption probability should has lag

compared to the fail rate. In the Fig.12, if disruption has lag, the disruption probability curve should be

closer to the demand rate with 0.8. Suppose those two curve overlap wholly, that means when probability

of disruption is higher, the demand rate is also higher. It causes higher stockout cost than demand phase

has 0.5 lag with disruption probability.
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Figure 11: The total cost under different policies when phase of demand rate changes
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Figure 12: The plot of fail and demand rate

3 The relationship of parameters under Q-t and EOQD-PSA-t-

ph policy

Our search on phase from 0 to 0.9, so 0 can represent 0 or 1 even 2. We smooth phase by adjusting

with integer N . In Fig.13, we also plot average order quantity over demand mean. In the figure, we find

there is a very strong linear relationship between phase and average order amount under optimal Q-t and

EOQD-PSA-t-ph policies as long as demand rate is constant over time or demand and fail rate has same

lag. When we do least square fit only on average order quantity over demand mean with phase, it reports

Phase = −0.535 + 1.15
Average− order − quantity

Demand−Mean

The F statistics for this fit is 2022.46 and corresponding P-value is almost 0, which indicates we

shouldn’t deny that there exists linear relationship between order quantity and corresponding optimal

phase. But when demand rate has the lag, it destroy such linear relationship. From the last plot of

Fig.13, we can see there is no clear patten between the phase and average order amount anymore.

From the fit, we can see this relationship is almost independent on all the parameters except demand

mean which is constant in our experiments. So I conjecture once we know average order quantity and

mean demand, there is unique phase among [0, ) such that it gives us the lowest cost no matter what other

parameters are. In Fig.14, I plot expected next order time if we use the optimal phase corresponding

one specific average order quantity and fail rate. Next order time tends to be more concentrated on the

bottom of fail rate.
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Figure 13: The relationship between phase and average order quantity under Q-t and EOQD-PSA-t-ph

policy
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Figure 14: The relationship between expected next order time and fail rate
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4 The robustness investigation of policies

Usually, the overall probability of disruption is low which means we probably have bad estimation of

those probabilities needed in the CTMC. So it would be interesting to study the tradeoff between saving

by employing complex control system and robust by using simple control rule. The relative amplitude

and phase of fail rate are the most possible wrong estimate parameters(phase should be much easier

to estimate than relative amplitude). We will use optimal Q-t and Q-nt policies under our estimations

to the different combination of fail rate RA and phase. To study this problem, we use two different

measures. One is worst case cost comparison and the other is average cost comparison. Here average

means every combination has equally probability. This is not realistic setting. We can try to assign

different probability to those combination. How to decide that distribution is another problem. We stick

on the uniform distribution.

We try to change relative amplitude and phase of fail rate both from 0 to 1 with incremental 0.1. We

plot the average cost for Q-nt policy. Actually as we argue in the section.2, the total cost doesn’t change

under any Q-nt policy even if we change relative amplitude and phase of fail rate as long as demand is

constant over time. So in our experiments, highest cost, average and lowest cost curves overlaps for Q-nt

policy when dRA = 0. There is only a little numerical difference among these three curves. We also plot

highest, average and lowest cost curves. The result is shown in Fig.15.
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Figure 15: Robust Plot when demand rate is constant over time

When stockout cost and fail rate is low enough, there is not much difference between highest and

lowest cost under Q-t policy. But in those region, the benefit is not as significant as the region. When

14



stockout cost and fail rate is high, the wrong estimation is costly. As shown in Fig.16, the highest cost

is reached when real phase has 0.5 lag to the estimation. The higher relative amplitude, the more costly

the wrong estimation needs to pay for. Fortunately, based on my common sense, the higher relative

amplitude, the more accurate the estimation of phase would be. Because more fluctuation will make it

easy to judge the bottom and top of fail rate based on the history data. That means if we are sure about

our estimation on the relative amplitude, we tend to get a accurate estimation of phase. So that we can

utilize Q-t policy to achieve lower cost. If we are not sure about our estimation on the relative amplitude,

we should be more conservative so that we won’t lose much if we have both wrong estimation on the

relative amplitude and phase.

But the last plot of Fig.15 proves my suggestion is wrong in the previous paragraph. Highest, average,

lowest cost curves under Q-t policy keeps constant. So do the relative amplitude, phase and average order

amount2. It means even if we estimate relative amplitude conservatively, it won’t bring us any benefit

on the robustness.

Another strange thing is that in section.2, we find EOQD-PSA-t policy sometimes is far worse than

optimal Q-nt policy. But in Fig.15, the highest cost brought by the Q-t policy is close to Q-nt and most

time is still better than Q-nt policy.
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Figure 16: A typical cost plot over phase and relative amplitude when Q-t solution is fixed

When demand rate varies over time, the corresponding result is shown in Fig.17. Since the demand

rate varies over time, the highest, average, lowest curve of Q-nt policy are not same. The spike in the

second plot in Fig.17 are caused by lattice search which shift relative amplitude of order quantity at

demand phase = 0.5.
2This result surprises me a lot, since even relative amplitude of fail rate is 0, optimal Q-nt and optimal Q-t should be

the same. If not, that means even if the fail rate is constant over time, stationary policy may be worse than time varying

policy

15



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70

75

80

85

90

95

100

Relative Amplitude of Demand Rate

T
ot

al
 C

os
t

Highest cost under optimal Q−nt
Average cost under optimal Q−nt
Highest cost under optimal Q−t
Lowest cost under optimal Q−nt
Average cost under optimal Q−t
Lowest cost under optimal Q−t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70

75

80

85

90

95

100

Phase of Demand Rate

T
ot

al
 C

os
t

Highest cost under optimal Q−nt
Average cost under optimal Q−nt
Highest cost under optimal Q−t
Lowest cost under optimal Q−nt
Average cost under optimal Q−t
Lowest cost under optimal Q−t

Figure 17: Robust Plot when demand rate varies

5 Conclusion

6 Appendix: How to use Matlab optimization solver to get the

satisfied result
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