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Abstract—A crucial challenge for scientific workflow man-
agement systems is to support the efficient and scalable storage
and querying of large provenance datasets that record the
history of in silico experiments. As new provenance manage-
ment systems are being developed, it is important to have
benchmarks that can evaluate these systems and provide an
unbiased comparison. In this paper, based on the requirements
for scientific workflow provenance systems, we design an exten-
sible benchmark that features a collection of techniques and
tools for workload generation, query selection, performance
measurement, and experimental result interpretation.
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formance; scalability; querying; experiment

I. INTRODUCTION

The provenance of data generated by scientific workflows
plays a central role in enabling critical eScience function-
alities, including experiment reproducibility, result interpre-
tation, and problem diagnosis. Various scientific workflow
management systems (SWfMSs) support provenance col-
lection and use their proprietary or third-party systems for
provenance storage, reasoning, and querying. Provenance
systems differ in a number of important ways, such as
provenance models, provenance vocabularies, inference sup-
port, and query languages. Therefore, benchmarking of such
systems is a challenging task.

In this work, we consider the issue of evaluating and
choosing a provenance system that is capable of dealing with
large provenance datasets, since scientific workflows are
frequently executed multiple times in an automated fashion
and can generate a large number of provenance graphs. Gen-
erally, to deal with large provenance datasets, provenance
systems should comply with two basic requirements. First,
such systems should use scalable and efficient techniques
to store and query data. Second, provenance systems should
provide efficient support for provenance-specific inference.
In addition, there can be functional requirements such as
supporting a particular provenance vocabulary or query type,
as defined by an application context.

With respect to the above two requirements, it is currently

difficult to evaluate existing systems. To consistently evalu-
ate a provenance system in terms of scalability, provenance
data in a range of sizes should be available. However, there
are few such datasets available and they are usually not
well-organized or documented. To evaluate a provenance
system in terms of inference support, provenance data with
predefined inferred results that are known to be correct and
complete should be available. We are not aware of any
provenance dataset that focuses on the inference aspect of
provenance data management. The series of four Provenance
Challenges [1], which can be considered as the state-of-
the-art in scientific workflow provenance benchmarking, do
not provide a testbed for evaluating system scalability and
inference but rather target functional requirements, such as
the expressiveness of provenance systems, their interoper-
ability, support of the Open Provenance Model (OPM) [2],
and various application issues.

As a result, we see a need for a benchmark that can
facilitate the evaluation of scientific workflow provenance
management systems in a systematic and unbiased manner.
In this paper, our main contribution is the design of a
novel benchmark that can be used to evaluate scalability
and inference support of such systems. The name of our
benchmark is the University of Texas Provenance Bench-
mark (UTPB). To address the challenge of provenance
data heterogeneity, we make UTPB extensible via so-called
workflow provenance templates that can be used with the
benchmark to automatically generate datasets of varying
sizes. UTPB 1.0 features 27 predefined provenance tem-
plates representing provenance captured for three sample
workflows using three vocabularies, namely OPMV, OPMO,
and OPMX, that serialize provenance according to the Open
Provenance Model in RDF and XML formats. Different
templates for a given workflow and vocabulary are defined
to capture different workflow execution scenarios, such as
successful vs. erroneous workflow runs, and raw provenance
vs. provenance with completion and multi-step inferences
materialized. The benchmark also supplies a provenance data
generator that can generate provenance datasets based on one



or more templates and includes 27 test queries organized
into 11 categories. Finally, UTPB defines five performance
metrics that can be used to empirically evaluate provenance
systems.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the architecture
and various components of the University of Texas Prove-
nance Benchmark. Section 4 concludes the paper and lists
possible future work directions.

II. RELATED WORK

Provenance management is recognized as an important
concept in scientific workflow environments as signified by
the series of four Provenance Challenges organized by the
community [1]. The first Provenance Challenge started in
2006 and focused on understanding and sharing information
about provenance representations and various capabilities
of existing provenance systems. The second Provenance
Challenge also commenced in 2006 and aimed at testing and
establishing interoperability of different provenance systems
by allowing them to exchange data. This event triggered an
effort of the community to establish a common ground for
provenance modelling and representation that later resulted
in the Open Provenance Model specification [2]. The third
Provenance Challenge launched in 2009 and was dedicated
to evaluating various aspects of OPM. Finally, the fourth
and last Provenance Challenge started in 2010 and was
designed to showcase OPM in the context of novel ap-
plications that are enabled by provenance interoperability.
While Provenance Challenges feature sample workflows and
provenance datasets, their main focus is on benchmarking
functional requirements of provenance system expressive-
ness, interoperability, OPM support, and OPM applications.
Therefore, UTPB is complementary to Provenance Chal-
lenges and achieves the orthogonal goal of testing non-
functional requirements of provenance systems, including
performance and scalability of data storage, querying, and
inference capabilities.

In the provenance literature, a few works [3], [4] that
empirically compare provenance systems rely on either their
own, ad-hoc benchmarks or benchmarks developed in other
research domains (e.g., [3] uses a semantic web benchmark).
To our best knowledge, UTPB is the first formally defined
benchmark that targets the scientific workflow provenance
domain. Yet, before designing UTPB, we surveyed bench-
marks for data management systems in several domains:
traditional [5], [6], [7], [8] and XML [9], [10], [11], [12]
databases, semantic web and knowledge base systems [13],
[14], [15], [16], and description logics systems [17], [18].
These benchmarks are not directly applicable to scientific
workflow provenance due to different data models, serial-
ization formats (e.g., provenance can be serialized in XML,
RDF and as relations), and reasoning requirements. How-
ever, we got a number of insights from existing works on

various aspects of benchmark design, such as query selection
and performance metrics. As we discuss in the respective
sections of the paper, some UTPB performance metrics
and benchmarking scenarios also exist in other domain
benchmarks, yet they have to be properly customized and
new ones have to be introduced to reflect the requirements
of the provenance field.

UTPB targets provenance systems that are used in sci-
entific workflow environments (e.g., Taverna, Kepler, View,
VisTrails, Swift, RDFProv, OPMProv, Karma, and many
others). We omit details on these systems for the brevity
of our presentation (e.g., see [4] for a brief survey).

III. UNIVERSITY OF TEXAS PROVENANCE BENCHMARK

In this section, we present the benchmark architecture
and provide more details for some of its components. The
complete suite of UTPB tools, provenance templates, and
test queries can be found at the UTPB website [19].

A. Benchmark Architecture

The UTPB architecture is shown in Fig. 1. It includes
a data generator that is capable of generating datasets of
varying sizes to test provenance system performance and
scalability. Data is generated based on provenance templates,
each of which describes the provenance of one workflow
execution that is serialized according to some provenance
vocabulary. Benchmark data is then fed to a test module
that interacts with one or more provenance systems to load
data and execute test queries in an automated fashion. Query
execution results are compared to reference answers to verify
their soundness and completeness. Finally, a benchmarking
report is produced by the test module.

While this “ideal” architecture for evaluating different
provenance systems may be fully supported by UTPB in the
future, UTPB 1.0 (presented in this paper) does not supply a
test module. There exist no standard or commonly accepted
API for provenance management systems and therefore,
interaction with each individual system requires a unique
program or script to load data and execute queries.

B. Provenance Vocabularies

Almost every existing scientific workflow management
system defines its own proprietary model for provenance,
and each model is serialized in some format, such as RDF,
XML, or relational data, according to one or more predefined
vocabularies or schemas. Supporting all existing provenance
vocabularies will be difficult to achieve for any prove-
nance benchmark. However, in addition to numerous pro-
prietary models, many systems also support the community-
driven provenance model, called Open Provenance Model
(OPM) [2], which was developed to provide a common layer
of interoperability among existing systems. While OPM is an
abstract model, there exist several vocabularies to serialize
OPM provenance. UTPB 1.0 supports three of them:
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Figure 1. UTPB benchmark architecture.
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Figure 2. Provenance graph of Database Experiment (successful execution).

• The OPM Vocabulary (OPMV) is a lightweight ontol-
ogy that allows serialization of most OPM features in
RDF.

• The OPM Ontology (OPMO) is an ontology that ex-
tends OPMV to provide full-fledged support of OPM
provenance serialization in RDF.

• The OPM XML Schema (OPMX) is a schema for XML
documents that serialize OPM provenance.

Future versions of UTPB will support additional prove-
nance vocabularies and models as they get developed and be-
come mature, including the most recent W3C’s provenance
data model (PROV-DM) [20] that is in the working draft
status as we write this paper.

C. Workflow Provenance Templates

The idea of using provenance templates, which can be
cloned or instantiated as many times as needed by a data

generator, came forth to overcome two issues. First, in the
emerging research field, selecting and hard-coding a single
workflow that can be used for provenance generation does
not seem to be an adequate long-term solution because such
a workflow may not include all possible features that may
be of interest at present and in the future. Instead, when
a particular feature needs to be tested, new provenance
templates should be designed and adopted by a benchmark.
Second, provenance data is heterogeneous, meaning that
it can be captured using various models and represented
using different vocabularies, and even the same vocabulary
may provide multiple ways to state the same information.
Templates enable the benchmark to overcome this challenge
as new templates can be created on demand to accommo-
date new provenance models and vocabularies. All in all,
provenance templates make the benchmark extensible and



Table I
UTPB 1.0 WORKFLOW TYPES AND THEIR CORRESPONDING TEMPLATE CHARACTERISTICS.

Workflow Name Template Characteristics
Processes Artifacts Accounts Agents Other

Database Experiment 7 14 2 1
Jeans Manufacturing 13 18 3 2 several processes use and generate the

same artifacts and are executed in parallel
French Press Coffee 15 15 4 0 several branches with multiple processes

are executed in parallel; several processes
trigger each other without the record of

using or generating artifacts

Table II
UTPB 1.0 TEST QUERIES.

Category Query
Graphs 1. Find all provenance graph identifiers.

2. Find a provenance graph with a particular identifier.
Dependencies 3. Find all artifact derivation dependencies in a particular provenance graph.

4. Find all process triggering dependencies in a particular provenance graph.
5. Find all artifact use dependencies in a particular provenance graph.
6. Find all artifact generation dependencies in a particular provenance graph.
7. Find all controlled-by dependencies in a particular provenance graph.

Artifacts 8. Find all artifacts and their values, if any, in a particular provenance graph.
9. Find all artifacts that served as initial inputs or final outputs of a workflow

whose execution is described in a particular provenance graph.
Processes 10. Find all processes and their persistent names, if any, in a particular provenance graph.

11. Find all processes that halted with an error in a particular provenance graph.
Accounts 12. Find all pairs of overlapping accounts in a particular provenance graph.

13. Find all pairs of accounts and their refinement accounts in a particular provenance graph.
Agents 14. Find all agents and their controlled processes, if any, in a particular provenance graph.

15. Find all agents that controlled two or more processes in a particular provenance graph.
Roles 16. Find artifacts that were used with different roles in a particular provenance graph.

17. Find artifacts that were used with the same roles by different processes
in a particular provenance graph.

Values 18. Find all artifacts with the largest numeric value in a particular provenance graph.
19. Find all pairs of artifacts that were derived from each other and have the same values

in a particular provenance graph.
Cross-Graph 20. Find all provenance graphs that have a common process that used all artifacts

Queries with the same values.
21. Find all pairs of provenance graphs whose structures match while semantics and exact values

of artifacts may be different.
22. Find all pairs of provenance graphs that are the same structurally and semantically, such as

in a case when provenance graphs were obtained by running a workflow multiple times
on the same inputs.

Inferences 23- Queries 3-7 with completion and multi-step inferences applied.
27.

Application- User-defined queries, specific to an application or template.
Specific



thus adaptable to the changing requirements of the field.
UTPB 1.0 has predefined provenance templates that deal

with three workflow types, three kinds of workflow ex-
ecution, and three provenance vocabularies, resulting in
3× 3× 3 = 27 templates overall. The three workflow types
were selected to be easy-to-understand and effective work-
flow examples that feature different structural characteristics.
The three workflows and their characteristics are listed in
Table I.

The three execution types for each virtual workflow are
successful execution, incomplete execution with an error,
and successful execution with materialized provenance in-
ferences. While the first two scenarios of success and failure
represent dataset heterogeneity, the last one can be used to
benchmark the inference support of a provenance system.

The graphical representation of a sample template for the
successful execution of a database experiment is shown in
Fig. 2. The graph follows the conventions used in the OPM
Specification [2]: processes are shown as rectangles; artifacts
are shown as ellipses; agents are shown as eight-sided
polygons; edges represent the dependencies “used”, “was-
GeneratedBy”, “wasControlledBy”, and “wasDerivedFrom”,
which are easily distinguishable based on the nodes they
connect (dependencies “wasTriggeredBy” are not shown as
they are inferrable in this case; they explicitly exist in a
graph with materialized inferences); roles are shown as edge
labels when applicable; and accounts are differentiated by
color.

Finally, this sample provenance graph and other graphs for
different executions of the three workflows are serialized in
vocabularies OPMV, OPMO, and OPMX as discussed in the
previous section.

It should be noted that we created all 27 templates
manually to have “clean” syntax and meaningful identifiers,
however a template can also be easily created from a
provenance document for a single workflow run generated
by a SWfMS with only minor modifications. The main
convention used in UTPB templates is that identifiers that
start with an underscore (‘ ’) or that do not belong to the
UTPB namespace are never modified by the data generator;
such identifiers are usually used to define persistent names
of the same processes across multiple workflow runs.

D. Provenance Generation

The UTPB data generator takes one or more provenance
templates of the same vocabulary as input and generates a
provenance dataset of desired size as output. Each template
is instantiated a particular number of times as specified by
the number-of-instances parameter. The process of instan-
tiation involves cloning a template, appending an ordinal
instance number to some identifiers to make them unique
across different instances, and replacing some of the literals
or values found in the template according to one of the
five customizable replacement policies. The data generator

places each template instance in a separate file or can
combine them together in a single file. In addition, a dic-
tionary file is generated with a list of all instance identifiers
in a dataset. For example, OPMO and OPMV instances
are named RDF graphs with graph names/identifiers also
serving as instance identifiers, and OPMX instances reuse
OPM graph identifiers as instance identifiers. Some of the
data generator features are illustrated in Fig. 3, where the
three Database Experiment OPMO templates are loaded
(left screenshot) and some of the literals found in the
first template are selected to be replaced using different
replacement policies (right screenshot).

It is important to note that under the same parameter
settings, data generation is reproducible even when random
number or string replacement policies are used, which is
accomplished by using the hashes of original literal values
found in the input template as seeds for the pseudo-random
number and string generators. To simplify dataset generation
repeatability, a configuration file with all data generation
settings can be saved by the application.

E. Test Queries

Since there is no standard or commonly accepted query
language for provenance, we choose to define test queries
in English and then provide SPARQL and XQuery versions
for the respective vocabularies. To select meaningful and
useful queries for UTPB, we surveyed existing provenance
literature including Provenance Challenges [1] and various
provenance applications. As a result, we designed 27 test
queries in 11 categories presented in Table II with the last
category being empty to provide extensibility for application
or template specific queries. In addition to the usefulness
requirement, we used two other requirements when selecting
these queries: 1) they should be generic to work with
different provenance templates and 2) they should provide
different patterns of query complexity. The queries satisfy
the first requirement as they only rely on “a particular
provenance graph” identifier information. They meet the
second requirement since they involve a number of diverse
operations, including optional/missing values, data aggre-
gation, operations on sets (i.e., union and difference), type
conversion, data combination/joining from multiple sources,
and graph pattern extraction and matching.

To illustrate how query complexity may vary, we provide
SPARQL versions of queries Q1 and Q8 for both OPMV
and OPMO vocabularies in Fig. 4. While both versions of
the first query contain only one triple pattern and are issued
over default RDF graphs with all named graph identifiers
(aka dictionary), the other query has higher complexity that
also varies with the vocabulary (two triple patterns and one
optional clause in OPMV and six triple patterns and two
optional clauses in OPMO) and is issued over the respective
named RDF graphs with provenance of particular workflow
executions. In Q8, the optional clauses are aimed at matching



(a) Choosing provenance templates and customizing output (b) Setting a replacement policy for a literal

Figure 3. UTPB data generation.

an artifact value if it exists; two alternative approaches
are used in the OPMO query version. For comparison,
our SPARQL query for Q9 (not shown in the figure) has
10/18 triple patterns, 8/8 optional clauses, 1/1 union and 2/2
filtering operations with complex conditions when expressed
over OPMV/OPMO data, respectively.

Finally, not all test queries are easily (if at all) expressible
in languages like SPARQL, XQuery, and SQL as these lan-
guages were not designed for provenance querying. There-
fore, existing provenance systems may not be able to answer
all the queries yet. For scalability benchmarking purposes,
we recommend selecting 10-15 UTPB queries with varying
complexity from supported categories of interest.

F. Performance Metrics

To provide a foundation for effective provenance system
evaluation and experimental results interpretation, UTPB
defines five main performance metrics: data loading time,
repository size, query response time, query soundness, and
query completeness. These metrics are known in databases
(e.g., OO1 Benchmark [7] and Wisconsin Benchmark [5],
[6]) and knowledge base systems (e.g., Lehigh University
Benchmark [21], [13]), however we apply several cus-
tomizations that are important for the scientific workflow
provenance field.

Data loading time refers to the time elapsed from acquir-
ing a raw dataset until the moment when it completely stored
into the system. This time includes any preprocessing of the
dataset, such as parsing and inference precomputation. In
addition to this standard metric, we define its special case –

ordinal data loading time – which refers to the time required
to store n-th provenance graph (template instance in UTPB)
when n − 1 graphs have already been stored and n ≥ 1.
This metric is important for provenance because SWfMSs
generated provenance datasets incrementally, one graph after
another, and it is crucial for a provenance system to be able
to keep up with incoming storage requests.

Repository size refers to the space taken by a provenance
system on a persistent storage device after a dataset has
been loaded into the system. Main memory consumption is
usually not measured as its accurate measurement is difficult
to achieve.

Query response time measures the time elapsed from
query issuance until the query result is returned and tra-
versed, where traversal refers to the sequential access of
the returned data to ensure that data (and not just a pointer
or a cursor) transfer time is included in the measurement.
Two special cases of this metric are cold-start time and
warm-start time, where the former refers to the first query
iteration after the system has been restarted and the latter
refers to any subsequent query iteration when the system has
a “warm” cache. For accuracy, the warm-start time should
be calculated as an average of at least 10 consecutive query
iterations.

Last but not least, query soundness and completeness
refer to the quality of query results, which must be correct
and complete. These metrics are especially useful in the
presence of inference, when new data that is not part of
the raw dataset is inferred based on provenance-specific



PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT *
WHERE { ?graph rdf:type owl:Thing . }

(a) Test query Q1, OPMV version.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT *
WHERE { ?graph rdf:type owl:Thing . }

(b) Test query Q1, OPMO version.

PREFIX opmv: <http://purl.org/net/opmv/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX utpb: <http://cs.panam.edu/utpb#>
SELECT ?artifact ?value
FROM NAMED <http://cs.panam.edu/utpb#opmGraph>
WHERE {

GRAPH utpb:opmGraph {
?artifact rdf:type opmv:Artifact .

OPTIONAL { ?artifact rdf:label ?value . }
}

}

(c) Test query Q8, OPMV version.

PREFIX opmv: <http://purl.org/net/opmv/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX opmo: <http://openprovenance.org/model/opmo#>
PREFIX utpb: <http://cs.panam.edu/utpb#>
SELECT ?artifact ?value
FROM NAMED <http://cs.panam.edu/utpb#opmGraph>
WHERE {

GRAPH utpb:opmGraph {
?artifact rdf:type opmv:Artifact .
OPTIONAL { ?artifact opmo:annotation ?annotation .

?annotation opmo:property ?property .
?property opmo:value ?value . }

OPTIONAL { ?artifact opmo:avalue ?artifactValue .
?artifactValue opmo:content ?value . }

}
}

(d) Test query Q8, OPMO version.

Figure 4. Test queries of varying complexity expressed in SPARQL for OPMV and OPMO vocabularies.

inference rules. While knowledge base systems frequently
use additional metrics of degree of soundness and degree
of completeness (measured in percents), we find them less
useful for the provenance benchmark. Since scientific work-
flow provenance is used to support experiments that lead
to scientific discoveries, soundness and completeness are of
supreme importance - partially correct or complete query
responses may lead to erroneous conclusions. Other related
metrics, such as forward-chaining (precomputed) inference
data loading and storage overheads and backward-chaining
inference (dynamic) query response overhead, can also be
defined.

G. Interpretation of Benchmark Results

For UTPB, we adapt two standard scenarios and propose
three new scenarios for benchmarking provenance systems
with respect to the main performance metrics.

First, different systems are compared across datasets of
varying sizes with respect to a single metric. It is helpful to
represent experimental results graphically as a curve chart
in which the X axis shows increasing dataset size and the
Y axis measures data loading time, repository size, or query
response time. The shapes of these curves signify about the
scalability of the systems as measurements usually increase
or remain nearly constant with the dataset growth. Curves
that remain closest to the X axis suggest better system
scalability.

Second, different systems are compared using a fixed
dataset with respect to a single metric. For example, query
response time, query soundness and query completeness

can be measured across different test queries for the same
dataset. Bar diagrams (alternatively curve charts or tabular
representations) with queries on the X axis and metric values
(bar heights) on the Y axis can aid in understanding how dif-
ferent system perform on queries with varying complexity.
Composite bar diagrams can be helpful to present overhead
metrics in relationship to the respective metrics with no
overhead and tabular representations can be most useful to
visualize query soundness and query completeness.

Third, the same system or different systems are evaluated
on provenance datasets that serialize the same information
using different vocabularies, such as OPMV and OPMO.
Different vocabularies can encode the same provenance
data, but may result in different dataset sizes, which may
affect data loading times and repository sizes. The same test
queries can be expressed in the same querying language,
such as SPARQL, according to chosen vocabularies but re-
sult in different query complexities, which may affect query
response times, query soundness and completeness. As in the
previous scenarios, similar curve graphs, bar diagrams and
tabular representations can be used to present and interpret
the results. Such an evaluation would be helpful to select an
appropriate vocabulary to meet application requirements in
terms of our metrics.

Fourth, different systems are compared on provenance
datasets that serialize the same information using different
technologies, such as RDF, XML and relational technolo-
gies. While this comparison seems natural for the prove-
nance field in its current state, it may be one of the most
difficult scenarios due to different system APIs, serialization



formats, query languages, and inference capabilities. Differ-
ent technologies may provide different advantages and have
different drawbacks, which can be revealed through this type
of benchmarking.

Last, the same or different systems are evaluated on
provenance datasets that serialize the same information using
different provenance models. For this type of comparison,
we plan to introduce additional query expressiveness metrics
to evaluate how different models can cope with different
categories and types of queries.

Furthermore, hybrid evaluation approaches resulting from
the above five scenarios are possible.

IV. CONCLUSION AND FUTURE WORK

We presented the University of Texas Provenance Bench-
mark, which is the first benchmark for evaluating and
comparing scientific workflow provenance management sys-
tems with respect to formally defined performance metrics,
including data loading time, repository size, query response
time, query soundness, and query completeness. We intro-
duced the notion of provenance templates, which make the
UTPB bemchmark extensible to address the challenge of
provenance heterogeneity in the evolving research field. We
designed 27 provenance templates that span over three work-
flow types, three workflow execution scenarios, and three
provenance vocabularies of the Open Provenance Model. We
developed a customizable data generation tool and selected
27 test queries and classified them into 11 provenance
querying categories. Finally, we described a number of
performance metrics and elaborated on the experimental
setup and interpretation of benchmark results.

In the future, our primary goal is to further showcase
UTPB via benchmarking several existing provenance sys-
tems. We will also seek to extend the benchmark with
new, emerging provenance vocabularies and additional test
queries. Furthermore, we plan to support additional func-
tional metrics, such as querying expressiveness, to make the
best use of the large and diverse set of test queries in the
benchmark.
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