Sec. 2.3 Perceptron 69

Example 2.12 A Perceptron for the Anp function: bipolar inputs and targets

The training process for bipolar input, « = 1, and threshold and initial weights =

0 is:
WEIGHT
INPUT NET OuUT TARGET CHANGES WEIGHTS
xy x 1 (w, w» b)
o 0 0)
¢l [0 0 1 a 1 nH 1 1)
a -1 1) 1 1 -1 (-1 1 -1 (© 2 0)
(-1 1 1 2 1 -1 (1 -1 - 1 -1
(-1 -1 1) -3 -1 -1 o 0 0 « 1 -1
In the second epoch of training, we have:
a 1 D 1 1 1 Q] 0 0 1 -1
a -1 1 -1 -1 -1 (] 0 0 « 1 -1
(-1 1 -1 -1 -1 o 0 0 « 1 -1
(-1 -1 1 -3 -1 -1 © 0 0 d 1 -1

Since all the Aw’s are 0 in epoch 2, the system was fully trained after the first epoch.

It seems intuitively obvious that a procedure that could continue to learn to
improve its weights even after the classifications are all correct would be better
than a learning rule in which weight updates cease as soon as all training patterns
are classified correctly. However, the foregoing example shows that the change
from binary to bipolar representation improves the results rather spectacularly.

We next show that the perceptron with a = 1 and 6 = .1 can solve the
problem the Hebb rule could not.

Other simple examples

Example 2.13 Perceptron training is more powerful than Hebb rule training

The mapping of interest maps the first three components of the input vector onto a
target value that is 1 if there are no zero inputs and that is —1 if there is one zero
input. (If there are two or three zeros in the input, we do not specify the target
value.) This is a portion of the parity problem for three inputs. The fourth component
of the input vector is the input to the bias weight and is therefore always 1. The
weight change vector is left blank if no error has occurred for a particular pattern.
The learning rate is « = 1, and the threshold 8 = .1. We show the following selected
epochs:

Simple Neural Nets for Pattern Classification ~ Chap. 2

INPUT NET OUT TARGET WEIGHT CHANGE WEIGHTS

X X2 X3 1 (W. W2 W3 b)
o 0 0 0)

Epoch 1

(1 11 0 1 (1 11 na 11 1)
(r1r o0 n 3 1 =] (-1 =1 0 =1 (0 01 0)
(ro 1 1 1 1 -1 (-1 0 -1 =D (=1 00 =1
o1 1 np-1 -l =1 ((-1 00 =1
Epoch 2

Ly 1l 02 =1 1 (1 K I & i (1) 11 0)
(a1 o0 n 1 1 =1 (-1 =1 0 -D(=1 01 =D
(ro 1 n -1 -1 -1 ((-1 01 =1
w1 1 n 0 0 | © -1 -1 -D(-1-10 =2
Epoch 3

a1t 1y -4 -l 1o I 1 o 01 -1
(rtron -1 -l -1 () (0 o1 =N
(ro 1 1 0 0 -1 (-1 0 -1 =Dh(=1 00 =2
ot 1n -2 =1 -1 (Y (=1 00 =2
Epoch 4

(L1 1 1) =3 =] 1 (1 11 Do 11 =1
(r1r o0 1n o0 0 -1 (-1 -1 0 -D(=1 01 =2
amo11n-2 -1 =1 (y(-1 01 =2
w1:r 1 n-r -l =1 ((=1 01 =2
Epoch 5

@11 1 =2 =1 1 (1 1 1 DI 12 —1)
(1 0 1 0 0 =] (-1 -1 0 -D(-1 02 =2
(ao 1 n-1 -l =] (y(=1 02 =2)
w11 n o 0 =1 o -1 -1 -D(=1-11 =3
Epoch 10

a1 =3 =l 1 (1 11 D 12 -=3)
@1 -0 1) =1 =1 =1l () (1 1 2 =3)
(mo 1 n 0 0 =1 (-1 0 -1 -1 (0 11 -4
o1 1 1n -2 -l =1 () (0 11 -4

(1 [N 1)

(=& =1 0 =1

()

@, =L =1 =1)

1 (1 S 1)
=1 ()
(=1 =l &1

()

1 (1 1 1 1)
(=1 =1 0 =D

-1 ()
()

()

()

()

()

Apply training algorithm to set the weights.

Sec. 2.3 Perceptron
Epoch 15:
(1 S | ([1 |
(1 L0 1) o
1o1 1n =2
O ESLEE1EED
Epoch 20:
(DL BT =2
at on -2
(ro 1 1) 0
ot 11 =2
Epoch 25:
S 1 (A5 e ST
AT 0 "1)"50
(1o 1 1 -2
o111 -1
Epoch 26:
(1) 1P) Y e
a1 o01n -3
aro 11 -2
o1 1 1) -1

Character recognition

Application Procedure
Step 0.
Step 1.

For each input vector x to be classified, do Steps 2-3.

Step 2.
Step 3.

Set activations of input units.
Compute response of output unit:

> xowi;
i

y_in

|
0
=i

if y_in > 0
if —6=y_.in=290
if y_in < —9

(1
0
0
(U

—_—— -
[55 I 5 I 56 B 35]

—

(S S A —_
R G

wowW W

e W

Pl e e

Lo S

o T

Example 2.14 A Perceptron to classify letters from different fonts: one output class

71

-4)
-5)
-5)
~6)

—6)
—6)
=7
=7

—T)
—-8)
-8)
—-8)

-8)
-8)
—-8)
-8)

As the first example of using the perceptron for character recognition, consider the
21 input patterns in Figure 2.20 as examples of A or not-A. In other words, we train

the perceptron to classify each of these vectors as belonging, or not belonging, to

72

Input from
Font 1

RO R B -
o3

=*
ke s s 0 00
E NI A T -

S v 0 0 0 0 o

L - X

o oSSR . .

efEe 0 0 0

..cnot.

E A Y
E- LR R R -

3
E IR RE R

.u*o.to-o

.
.

etk o 0 0 ok

LA
L

.
. .

..

..

..
o odfe s ot
m...l
LN B B T)

LU

- = 8 #
.- " 8 88 -
.- " " 8 e -
- ® 8 8 -
- & & & = -
- " & & @ -
- - s - -
.#... -
RETTIR

.BO...

Figure 2.20 Training input and target output patterns.

o ofEe o0 o o
$eth e o0 0 0 o3k o
LICE

CRCEE - AT -
E L]

L -

Q) 3o oo
edbe e o A e
o3k o

.

.
cedke o FEe s
e s o o

k- L

s o ofpe 0 0w
LI -
CCE - 3
DT - (-
o e e
W oreee

o o3k e o odpsE

E- RN R -

e o o 0 ofke o
L

e o otke s otk () FHeo e 000 oFE o

s ofpoetEe 0 0
o efe o ok s

CE - LR - X

$he v 00 0 0 o o
et o oo ok o

Lo LRI I

LR I

Sec. 2.3 Perceptron 73

the class A. In that case, the target value for each pattern is either 1 or —1; only
the first component of the target vector shown is applicable. The net is as shown in
Figure 2.14, and n = 63. There are three examples of A and 18 examples of not-A
in Figure 2.20.

We could, of course, use the same vectors as examples of B or not-B and train
the net in a similar manner. Note, however, that because we are using a single-layer
net, the weights for the output unit signifying A do not have any interaction with
the weights for the output unit signifying B. Therefore, we can solve these two
problems at the same time, by allowing a column of weights for each output unit.
Our net would have 63 input units and 2 output units. The first output unit would
correspond to “‘A or not-A’’, the second unit to **B or not-B.”” Continuing this idea,
we can identify 7 output units, one for each of the 7 categories into which we wish
to classify our input.

Ideally, when an unknown character is presented to the net, the net’s output
consists of a single ““yes’” and six ‘‘nos.’” In practice, that may not happen, but the
net may produce several guesses that can be resolved by other methods, such as
considering the strengths of the activations of the various output units prior to setting
the threshold or examining the context in which the ill-classified character occurs.

Example 2.15 A Perceptron to classify letters from different fonts: several output classes

The perceptron shown in Figure 2.14 can be extended easily to the case where the
input vectors belong to one (or more) of several categories. In this type of application,
there is an output unit representing each of the categories to which the input vectors
may belong. The architecture of such a net is shown in Figure 2.21.

Figure 2.21 Perceptron to classify input
into seven categories.

74

Simple Neural Nets for Pattern Classification =~ Chap. 2

For this example, each input vector is a 63-tuple representing a letter expressed
as a pattern on a 7 X 9 grid of pixels. The training patterns are illustrated in Figure
2.20. There are seven categories to which each input vector may belong. so there
are seven components to the output vector, each representing a letter: A, B, C, D,
E, K, or J. For ease of reading, we show the target output pattern indicating that
the input was an “A™ as (A - - - - -); a BB e eoee), etc.

The training input patterns and target responses must be converted to an ap-
propriate form for the neural net to process. A bipolar representation has better
computational characteristics than does a binary representation. The input patterns
may be converted to bipolar vectors as described in Example 2.8; the target output
pattern (A « - - - - - -) becomes the bipolar vector (1, =1, =1, =1, =1, =1, —1)
and the target pattern (- B - - - - - -) is represented by the bipolar vector (=1, 1, — 1,
-1, -1, -1, =1).

A modified training algorithm for several output categories (threshold = 0,
learning rate = 1, bipolar training pairs) is as follows:

Step 0. Initialize weights and biases
(0 or small random values).
Step 1. While stopping condition is false, do Steps 1-6.
Step 2. For each bipolar training pair s : t, do Steps 3-5.

Step 3. Set activation of each input unit, i = I, n:
Xi = §;.
Step 4. Compute activation of each output unit,
J=Ys s amt

yoin; = b; + 3 xiwi.
i

I ify_in; >0
= 0 if—-60=yin =86
-1 ify_in; < —8

Step 5. Update biases and weights, j = 1, ..., m:
i = L s
If t; # y;. then

bi(new) = bjlold) + 13
“‘U{I"ICW) = H',‘J'{Old) + 1;X;.

Else, biases and weights remain unchanged.
Step 6. Test for stopping condition:
If no weight changes occurred in Step 2, stop: otherwise,
continue.

After training, the net correctly classifies each of the training vectors.

The performance of the net shown in Figure 2.21 in class:ifying input vectors

that are similar to the training vectors is shown in Figure 2.22. Each of the input

Sec. 2.3

Perceptron

Input from

Font 1

Font 2

Input from

Font 3

e o0 0 00 o

e o o3k
e o o3k

[T -

4}:

e o 0 0

st

eeeDoe.

Figure 2.22 Classification of noisy input patterns using a perceptron.

‘foge::

Y e
....E..

ooooo

ooooo .
ooooo .
ooooo .
ooooo .
ooooo

. o o0 .
. ° e o

oo oFpe ok
$ho o o ok o
o o s otk o3

Foe o0 o3k

E- X

® o000 Te

oooooo
oooooo

oooooo

Oft#e + #0
effoce e
.#o-#n.
LX - X ¥e LI
ofiffo e e
o#o#oon
X XRF o X
O+ - ##

sesse X

76 Simple Neural Nets for Pattern Classification = Chap. 2

patterns is a training input pattern with a few of its pixels changed. The pixels
where the input pattern differs from the training pattern are indicated by @ for
a pixel that is “‘on’’ now but was “‘off"" in the training pattern, and O for a pixel
that is ‘‘off’ now but was originally ‘‘on.”

2.3.4 Perceptron Learning Rule Convergence Theorem

The statement and proof of the perceptron learning rule convergence theorem
given here are similar to those presented in several other sources [Hertz, Krogh,
& Palmer, 1991: Minsky & Papert, 1988; Arbib, 1987]. Each of these provides a
slightly different perspective and insights into the essential aspects of the rule.
The fact that the weight vector is perpendicular to the plane separating the input
patterns at each step of the learning processes [Hertz, Krogh, & Palmer, 1991]
can be used to interpret the degree of difficulty of training a perceptron for different
types of input.
The perceptron learning rule is as follows:
Given a finite set of P input training vectors

x(p), p=1...,P,
each with an associated target value
tHp), p=l v b
which is either + | or — 1, and an activation functiony = f(y_in), where

1 ify_in>8
y = 0 f -0=yin=48
—1 ify_in < -8,

the weights are updated as follows:
If y # t, then

w (new) = w (old) + x;
else
no change in the weights.

The perceptron learning rule convergence theorem is:

If there is a weight vector w* such that f(x(p)-w*) = t(p) for all p, then
for any starting vector w, the perceptron learning rule will converge to a weight
vector (not necessarily unique and not necessarily w*) that gives the correct re-
sponse for all training patterns, and it will do so in a finite number of steps.

The proof of the theorem is simplified by the observation that the training
set can be considered to consist of two parts:

F* = {x such that the target value is + 1}

Sec. 2.3 Perceptron 77

and
F~ = {x such that the target value is —1}.
A new training set is then defined as
F=F"U-F,
where
—F~ = {—xsuch that xis in F~}.

In order to simplify the algebra slightly, we shall assume, without loss of gen-
erality, that 6 = 0 and o = 1 in the proof. The existence of a solution of the
original problem, namely the existence of a weight vector w* for which

xw* >0 ifxisin F*

and
xw¥ <0 ifxisin F—,

is equivalent to the existence of a weight vector w* for which
x-w* >0 if xisin F.

All target values for the modified training set are + 1. If the response of the net
is incorrect for a given training input, the weights are updated according to

w(new) = w(old) + x.

Note that the input training vectors must each have an additional component
(which is always 1) included to account for the signal to the bias weight.

We now sketch the proof of this remarkable convergence theorem, because
of the light that it sheds on the wide variety of forms of perceptron learning that
are guaranteed to converge. As mentioned, we assume that the training set has
been modified so that all targets are + 1. Note that this will involve reversing the
sign of all components (including the input component corresponding to the bias)
for any input vectors for which the target was originally —1.

We now consider the sequence of input training vectors for which a weight
change occurs. We must show that this sequence is finite.

Let the starting weights be denoted by w(0), the first new weights by w(1),
etc. If x(0) is the first training vector for which an error has occurred, then

w(l) = w(0) + x(0) (where, by assumption, x(0)-w(0) < 0).

If another error occurs, we denote the vector x(1); x(1) may be the same as x(0)
if no errors have occurred for any other training vectors, or x(1) may be different
from x(0). In either case,

w(2) = w(l) + x(1) (where, by assumption, x(1)-w(1) =< 0).

78 Simple Neural Nets for Pattern Classification Chap. 2

At any stage, say, k, of the process, the weights are changed if and only if the
current weights fail to produce the correct (positive) response for the current
input vector, i.e., if x(k — [)'w(k — 1) = 0. Combining the successive weight
changes gives

w(k) = w(0) + x(0) + x(1) + x(2) + - + x(k — 1).

We now show that k& cannot be arbitrarily large.

Let w* be a weight vector such that x-w* > 0 for all training vectors in F.
Let m = min{x-w*}, where the minimum is taken over all training vectors in F;
this minimum exists as long as there are only finitely many training vectors. Now,

wlk)w* = [w(0) + x(0) + x(1) + x(2) + - + x(k — 1)]'w*
= w(0)-w* + km

since x(i)w* = m foreachi, | =i =< P,
The Cauchy-Schwartz inequality states that for any vectors a and b,

(a-b)* = [al* [Ib]]*,

or
(a-b)?
llalf* = b (for [b* # 0).
Therefore,
(w(k)-w*)?
wk)P = 2 L
WO = = wepp
_ (w0)-w* + km)?
lIw*[?

This shows that the squared length of the weight vector grows faster than k2,
where k is the number of time the weights have changed.

However, to show that the length cannot continue to grow indefinitely, con-
sider

w(k) = wk — 1) + x(k — 1),
together with the fact that
x(k = Dwk — 1) =0.
By simple algebra,
Iw(k)IP = |lwk = DIF + 2x(k = D:w(k = 1) + [x(k = DJ?
= [wk = DI? + IIx(k = DIP.

Sec. 2.3 Perceptron 79

Now let M = max {|| x |* for all x in the training set}; then
Iw(I? < [Iw(k — DI? + |x(k — D
= wtk = 2 + IIx(k — 2I? + [x(k — D

= [WOIP + [xO)F + - + |x(k — D
=< [wOI? + kM.

Thus, the squared length grows less rapidly than linearly in k.
Combining the inequalities

(wO)w* + km)?
| = T A
(bl o

and
[w(k)I? = |w(O)|* + kM

shows that the number of times that the weights may change is bounded. Spe-
cifically,
(w(0)w* + km)?
[Iw*|?

=< [Iw(k)|? < |wO)?> + kM.

Again, to simplify the algebra, assume (without loss of generality) that w(0) = 0.
Then the maximum possible number of times the weights may change is given by

or

M Jw*|?

m2

k=

Since the assumption that w* exists can be restated, without loss of generality,
as the assumption that there is a solution weight vector of unit length (and the
definition of m is modified accordingly), the maximum number of weight updates
is M/m>. Note, however, that many more computations may be required, since
very few input vectors may generate an error during any one epoch of training.
Also, since w* is unknown (and therefore, so is m), the number of weight updates
cannot be predicted from the preceding inequality.

The foregoing proof shows that many variations in the perceptron learning
rule are possible. Several of these variations are explicitly mentioned in Chapter
11 of Minsky and Papert (1988).

The original restriction that the coefficients of the patterns be binary is un-

80 Simple Neural Nets for Pattern Classification Chap. 2

necessary. All that is required is that there be a finite maximum norm of the
training vectors (or at least a finite upper bound to the norm). Training may take
a long time (a large number of steps) if there are training vectors that are very
small in norm. since this would cause small m to have a small value. The argument
of the proof is unchanged if a nonzero value of 6 is used (although changing the
value of § may change a problem from solvable to unsolvable or vice versa). Also,
the use of a learning rate other than 1 will not change the basic argument of the
proof (see Exercise 2.8). Note that there is no requirement that there can be only
finitely many training vectors, as long as the norm of the training vectors is
bounded (and bounded away from 0 as well). The actual target values do not
matter. either: the learning law simply requires that the weights be incremented
by the input vector (or a multiple of it) whenever the response of the net is incorrect
(and that the training vectors can be stated in such a way that they all should give
the same response of the net).

Variations on the learning step include setting the learning rate « to any
nonnegative constant (Minsky starts by setting it specifically to 1), setting a t0
1/|x|| so that the weight change is a unit vector, and setting « to (x-w)/|x|* (which
makes the weight change just enough for the pattern x to be classified correctly
at this step).

Minsky sets the initial weights equal to an arbitrary training pattern. Others
usually indicate small random values.

Note also that since the procedure will converge from an arbitrary starting
set of weights, the process is error correcting, as long as the errors do not occur
too often (and the process is not stopped before error correction occurs).

2.4 ADALINE

The ApALINE (ApAptive Linear NEuron) [Widrow & Hoff, 1960] typically uses
bipolar (1 or — 1) activations for its input signals and its target output (although
fTis not restricted to such values). The weights on the connections from the input
units to the ADALINE are adjustable. The ADALINE also has a bias, which acts like.
an adjustable weight on a connection from a unit whose activation is always 1.

In general, an ADALINE can be trained using the delta rule, also known as
the least mean squares (LMS) or Widrow-Hoff rule. The rule (Section 2.4.2) can
also be used for single-layer nets with several output units; an ADALINE is a special
case in which there is only one output unit. During training, the activation of the
unit is its net input, i.e., the activation function is the identity function. The
[earning rule minimizes the mean squared error between the activation and the
target value. This allows the net to continue learning on all training patterns, even
after the correct output value is generated (if a threshold function is applied) for
some patterns.

After training, if the net is being used for pattern classification in which the
desired output is either a +1 or a —1, a threshold function is applied to the net

Sec. 2.4 ADALINE 81

input to obtain the activation. If the net input to the ADALINE is greater than or
equal to O, then its activation is set to 1; otherwise it is set to —1. Any problem
for which the input patterns corresponding to the output value +1 are linearly
separable from input patterns corresponding to the output value — 1 can be mod-
eled successfully by an ADALINE unit. An application algorithm is given in Section
2.4.3 to illustrate the use of the activation function after the net is trained.

In Section 2.4.4, we shall see how a heuristic learning rule can be used to
train a multilayer combination of ADALINES, known as a MADALINE.

2.4.1 Architecture

An ADALINE is a single unit (neuron) that receives input from several units. It
also receives input from a “‘unit’’ whose signal is always + 1, in order for the bias
weight to be trained by the same process (the delta rule) as is used to train the
other weights. A single ADALINE is shown in Figure 2.23.

@— Wy »{ Y Figure 2.23 Architecture of an
ADALINE.

Several ADALINES that receive signals from the same input units can be
combined in a single-layer net, as described for the perceptron (Section 2.3.3).
If, however, ADALINES are combined so that the output from some of them be-
comes input for others of them, then the net becomes multilayer, and determining
the weights is more difficult. Such a multilayer net, known as a MADALINE, is
considered in Section 2.4.5.

2.4.2 Algorithm
A training algorithm for an ADALINE is as follows:
Step 0. Initialize weights.
(Small random values are usually used.)

Set learning rate o.
(See comments following algorithm.)

82 Simple Neural Nets for Pattern Classification Chap. 2

Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each bipolar training pair s:t, do Steps 3-5.

Step 3. Set activations of input units, i = 1, ..., m
Xy = 8.
Step 4. Compute net input to output unit:

y_in = b + D, xiw;.

Step 5. Update bias and weights, i = 1, ..., n
b(new) = b(old) + alt — y_in).
winew) = wlold) + a(t — y_in)x;.

Step 6. Test for stopping condition:
If the largest weight change that occurred in Step 2 is
smaller than a specified tolerance, then stop; otherwise
continue.

Setting the learning rate to a suitable value requires some care. According
to Hecht-Nielsen (1990), an upper bound for its value can be found from the largest
eigenvalue of the correlation matrix R of the input (row) vectors x(p):

P

>, x(p)x(p),

p=1

1
R =~
P

namely,
o < one-half the largest eigenvalue of R.

However, since R does not need to be calculated to compute the weight updates,
it is common simply to take a small value for a (such as = .1) initially. If too
large a value is chosen, the learning process will not converge; if too small a value
is chosen, learning will be extremely slow [Hecht-Nielsen, 1990]. The choice of
learning rate and methods of modifying it are considered further in Chapter 6.
For a single neuron, a practical range for the learning rate a is 0.1 = na = 1.0,
where n is the number of input units [Widrow, Winter & Baxter, 1988].

The proof of the convergence of the ADALINE training process is essentially
contained in the derivation of the delta rule, which is given in Section 2.4.4.

2.4.3 Applications

After training, an ADALINE unit can be used to classify input patterns. If the target
values are bivalent (binary or bipolar), a step function can be applied as the

Sec. 2.4 ADALINE 83

activation function for the output unit. The following procedure shows the step
function for bipolar targets, the most common case:

Step 0. Initialize weights
(from ApDALINE training algorithm given in Section 2.4.2).
Step 1. For each bipolar input vector x, do Steps 2—4.
Step 2. Set activations of the input units to x.
Step 3. Compute net input to output unit:

y-in = b + > x,w;.

Step 4. Apply the activation function:

_ 1 ify_in=0;
Y= 1-1 if y_in < 0.

Simple examples

The weights (and biases) in Examples 2.16-2.19 give the minimum total squared
error for each set of training patterns. Good approximations to these values can
be found using the algorithm in Section 2.4.2 with a small learning rate.

Example 2.16 An ApaLive for the Anp function: binary inputs, bipolar targets

Even though the ApaLINE was presented originally for bipolar inputs and targets,
the delta rule also applies to binary input. In this example, we consider the Anp
function with binary input and bipolar targets. The function is defined by the fol-
lowing four training patterns:

X1 X2 t
1 1 1
1 0 -1
0 1 -1
0 0 -1

As indicated in the derivation of the delta rule (Section 2.4.4), an ADALINE is
designed to find weights that minimize the total error

4
E =3 (xi(pw, + x2(p)wy + wo — H(p)),

r=1
where
Xi(p)wy + x2p)wa + wy

is the net input to the output unit for pattern p and 1(p) is the associated target for
pattern p.

84 Simple Neural Nets for Pattern Classification Chap. 2

Weights that minimize this error are

Wy, = 1

and

Wa = |,
with the bias
Wo = —5%
Thus, the separating line is

3
+ x;, —==0.
X X2 5

The total squared error for the four training patterns with these weights is 1.
A minor modification to Example 2.11 (setting 8 = 0) shows that for the per-
ceptron, the boundary line is

X2 = —gx o=
S E SN
(The two boundary lines coincide when 6 = 0.) The total squared error for the
minimizing weights found by the perceptron is 10/9.
Example 2.17 An Apauine for the Anp function: bipolar inputs and targets

The weights that minimize the total error for the bipolar form of the Anp function

are
e
S52
and
wa
r 2]
with the bias
g
o 2 .
Thus, the separating line is
1 1 |
2x1+5.r:_2—0.

which is of course the same line as
Xy + X3 — 1 =0,

as found by the perceptron in Example 2.12.

Sec. 2.4 ADALINE 85

Example 2.18 An ApaLINE for the Anp Not function: bipolar inputs and targets

The logic function x; Anp Nor x; is defined by the following bipolar input and target
patterns:

X1 X2 t

1 I -1
1 -1 1
-1 1 -1
-1 -1 -1

Weights that minimize the total squared error for the bipolar form of the Anp Not
function are

oot
2
and
L]
2 = 2 ’
with the bias
1
Wo = —=.
0 2
Thus, the separating line is
1 1 1
—x1—2x2—§—0.

Example 2.19 An ApaLINE for the Or function: bipolar inputs and targets

The logic function x; Or x, is defined by the following bipolar input and target

patterns:
X) X t
1 1 1
1 -1 1
-1 1 1
-1 -1 -1

Weights that minimize the total squared error for the bipolar form of the Or function
are

N =

I
I

86 Simple Neural Nets for Pattern Classification Chap. 2

and
W
2 2 .
with the bias
Wo = 3
Thus, the separating line is
1 1 1
§I| +§.1’2+‘2‘=0.

2.4.4 Derivations

Delta rule for single output unit

The delta rule changes the weights of the neural connections so as to minimize
the difference between the net input to the output unit, y_in, and the target value
t. The aim is to minimize the error over all training patterns. However, this is
accomplished by reducing the error for each pattern, one at a time. Weight cor-
rections can also be accumulated over a number of training patterns (so-called
batch updating) if desired. In order to distinguish between the fixed (but arbitrary)
index for the weight whose adjustment is being determined in the derivation that
follows and the index of summation needed in the derivation, we use the index
I for the weight and the index i for the summation. We shall return to the more
standard lowercase indices for weights whenever this distinction is not needed.
The delta rule for adjusting the /th weight (for each pattern) is

Aw; = alt — y_in)x,.
The nomenclature we use in the derivation is as follows:

X vector of activations of input units, an n-tuple.
y—in the net input to output unit Y is

n
y-in = X xiwi.
i=1
t target output.
Derivation. The squared error for a particular training pattern is
E = (1t — y_in)*

E is a function of all of the weights, w;, i = 1, . . ., n. The gradient of E is the
vector consisting of the partial derivatives of E with respect to each of the weights.
The gradient gives the direction of most rapid increase in E; the opposite direction

Sec. 2.4 ADALINE 87

gives the most rapid decrease in the error. The error can be reduced by adjusting

. .)) oF
the weight w; in the direction of — — .
6w1
Since y_in = >, x;w;,
i=1
oE dy_in
E - - yinZ
owy owy
= =2t — y_in)x,.

Thus, the local error will be reduced most rapidly (for a given learning rate) by
adjusting the weights according to the delta rule,

Aw, = alt — y_in)x,.

Delta rule for several output units

The derivation given in this subsection allows for more than one output unit. The
weights are changed to reduce the difference between the net input to the output
unit, y_iny, and the target value ¢;. This formulation reduces the error for each
pattern. Weight corrections can also be accumulated over a number of training
patterns (so-called batch updating) if desired.

The delta rule for adjusting the weight from the Ith input unit to the Jth
output unit (for each pattern) is

Awy = alty — y-ing)x;.

Derivation. The squared error for a particular training pattern is
m
E= 2 (4 — y-in))*.
Jj=1

E is a function of all of the weights. The gradient of E is a vector consisting of
the partial derivatives of E with respect to each of the weights. This vector gives
the direction of most rapid increase in E; the opposite direction gives the direction
of most rapid decrease in the error. The error can be reduced most rapidly by
adjusting the weight w,, in the direction of —aE/aw,;.

We now find an explicit formula for 8E/éw,, for the arbitrary weight w,,.
First, note that

oE a =
= t; — y-in)*
Wiy Owgy ng (1 = y-in)

) .
= (t; — y_iny)?,
owWyy

