FUNDAMENTALS
OF NEURAL NETWORKS

ARCHITECTURES, ALGORITHMS, AND APPLICATIONS

Laurene Fausett

!
j Florida Institute of Technology
|
|
I
|

U

Prentice Hall, Upper Saddle River, New Jersey 07458

does
Hebb
), but
/, we

)
0)
1)
0)
—1)
—2)
input

sible
plane

polar

Sec.i2i.3 Perceptron

2.3 PERCEPTRON

Perceptrons had perhaps the most far-reaching impact of any of the early neural
nets. The perceptron learning rule is a more powerful learning rule than the Hebb
rule. Under suitable assumptions, its iterative learning procedure can be proved
to converge to the correct weights, i.e., the weights that allow the net to produce
the correct output value for each of the training input patterns. Not too surpris-
ingly, one of the necessary assumptions is that such weights exist.

A number of different types of perceptrons are described in Rosenblatt (1962)
and in Minsky and Papert (1969, 1988). Although some perceptrons were self-
organizing, most were trained. Typically, the original perceptrons had three layers
of neurons—sensory units, associator units, and a response unit—forming an
approximate model of a retina. One particular simple perceptron [Block, 1962]
used binary activations for the sensory and associator units and an activation of
+1, 0, or —1 for the response unit. The sensory units were connected to the
associator units by connections with fixed weights having values of + 1,0, or —1,
assigned at random.

The activation function for each associator unit was the binary step function
with an arbitrary, but fixed, threshold. Thus, the signal sent from the associator
units to the output unit was a binary (0 or 1) signal. The output of the perceptron
is y = f(y_in), where the activation function is

1 if y_in >0
f(y_in) = 0 if —0=y.in=<9
= ify_in < —9

The weights from the associator units to the response (or output) unit were
adjusted by the perceptron learning rule. For each training input, the net would
calculate the response of the output unit. Then the net would determine whether
an error occurred for this pattern (by comparing the calculated output with the
target value). The net did not distinguish between an error in which the calculated
output was zero and the target — 1, as opposed to an error in which the calculated
output was +1 and the target — 1. In either of these cases, the sign of the error
denotes that the weights should be changed in the direction indicated by the target
value. However, only the weights on the connections from units that sent a non-
zero signal to the output unit would be adjusted (since only these signals con-
tributed to the error). If an error occurred for a particular training input pattern,
the weights would be changed according to the formula

wi(new) = w;(old) + atx;,

where the target value ris +1 or —1 and « is the learning rate. If an error did
not occur, the weights would not be changed.

60

Simple Neural Nets for Pattern Classification Chap. 2

Training would continue until no error occurred. The perceptron learning
rule convergence theorem states that if weights exist to allow the net to respond
correctly to all training patterns, then the rule’s procedure for adjusting the
weights will find values such that the net does respond correctly to all training
patterns (i.e., the net solves the problem-or learns the classification). Moreover,
the net will find these weights in a finite number of training steps. We will consider
a proof of this theorem in Section 2.3.4, since it helps clarify which aspects of
the many variations on perceptron learning are significant.

2.3.1 Architecture

Simple perceptron for pattern classification

The output from the associator units in the original simple perceptron was a binary
vector; that vector is treated as the input signal to the output unit in the sections
that follow. As the proof of the perceptron learning rule convergence theorem
given in Section 2.3.4 illustrates, the assumption of a binary input is not necessary.
Since only the weights from the associator units to the output unit could be ad-
Justed, we limit our consideration to the single-layer portion of the net, shown in

Figure 2.14. Thus, the associator units function like input units, and the

archi-
tecture is as given in the figure.

0¥
e

Wi

Wn

@——’/ Figure 2.14 Perceptron to perform sin-

gle classification.

The goal of the net is to classify each input pattern as belonging, or not
belonging, to a particular class. Belonging is signified by the output unit giving a
response of + 1; not belonging is indicated by aresponse of — 1. The net is trained

to perform this classification by the iterative technique described earlier and given
in the algorithm that follows.

Sec.
2.3

The
tupl
not

botk
follc
sitiv

Step

Step

Also
of y-
learr

mn Sf

ming
pond
y the
ining
ver,
sider
ts of

nary
tions
rem
Sary.
> ad-
VI in
rchi-

18in-

' not
ng a
ined
iven

See:'2:3 Perceptron

2.3.2 Algorithm

The algorithm given here is suitable for either binary or bipolar input vectors (4-
tuples), with a bipolar target, fixed 6, and adjustable bias. The threshold 6 does
not play the same role as in the step function illustrated in Section 2.1.2; thus,
both a bias and a threshold are needed. The role of the threshold is discussed
following the presentation of the algorithm. The algorithm is not particularly sen-
sitive to the initial values of the weights or the value of the learning rate.

Step 0. Initialize weights and bias.
(For simplicity, set weights and bias to zero.)
Set learning rate a (0 < a = 1).
(For simplicity, o can be set to 1.)
Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each training pair s:t, do Steps 3-5.

Step 3. Set activations of input units:
X;i = ;.
Step 4. Compute response of output unit:

y_in = b + > x;wi;
i

1 if y_in >0
y = 0 if —0=y_.in=29
=3} if y_in < —0

Step 5. Update weights and bias if an error occurred
for this pattern.
Ify#1t,

winew) = w;(old) + arx;,
b(new) = b(old) + at.

else

wi(new) w;(old),
b(new) = b(old).

Step 6. Test stopping condition:
If no weights changed in Step 2, stop; else, continue.

Note that only weights connecting active input units (x; # 0) are updated.
Also, weights are updated only for patterns that do not produce the correct value
of\yfmﬁz%:;aore training patterns produce the correct response, Iess
learning occurs, This is in contrast to the training of the ADALINE units described
in Section 2.4, in which learning is based on the difference between y_in and ¢.

-

62 Simple Neural Nets for Pattern Classification Chap. 2

The threshold on the activation function for the response unit is a fixed,
non-negative value 6. The form of the activation function for the output unit
(response unit) is such that there is an ‘‘undecided’’ band (of fixed width deter-
mined by 6) separating the region of positive response from that of negative re-
sponse. Thus, the previous analysis of the interchangeability of bias and threshold
does not apply, because changing 6 would change the width of the band, not just
the position.

Note that instead of one separating line, we have a line separating the region
of positive response from the region of zero response, namely, the line bounding
the inequality

WiXx; + wox, + b > 6,

and a line separating the region of zero response from the region of negative
response, namely, the line bounding the inequality

WiX; + wax, + b <)7

2.3.3 Application

Logic functions

Example 2.11 A Perceptron for the Anp function: binary inputs, bipolar targets

Let us consider again the Anp function with binary input and bipolar target, now
using the perceptron learning rule. The training data are as given in Example 2.6 for
the Hebb rule. An adjustable bias is included, since it is necessary if a single-layer
net is to be able to solve this problem. For simplicity, we take o = 1| and set the
initial weights and bias to 0, as indicated. However, to illustrate the role of the
threshold, we take § = .2.

The weight change is Aw = #(x,, x,, 1) if an error has occurred and zero
otherwise. Presenting the first input, we have:

WEIGHT
INPUT NET ouTt TARGET CHANGES WEIGHTS

x1 x» 1) (w, wr b)
(1] 0 0)
(1 1 1) 0 0 1 (1 1 1) (1 1 1)

The separating lines become
X T Xl =2

and

X1+ Xp -k = —2:

Sec. 2.

W

xed,
unit
ter-
> re-
hold
Just

gion
ding

tive

10W
 for
lyer
the
the

€ro

Sec.. 2.3

Perceptron

X2

IR T

\ Figure 2.15 Decision boundary for logic
N function AND after first training input.

The graph in Figure 2.15 shows that the response of the net will now be correct for
the first input pattern.

Presenting the second input yields the following:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(1 x 1) (wy w, b)
(1 | 1)
(1 0 1) 2 1 = (=1 0 -1 (0 | 0)

The separating lines become

and
X = — o

The graph in Figure 2.16 shows that the responseof thenet will now (still) be correct
for the first input point.

For the third input, we have:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(XnagsXs 1) (wy ws b)
(0 1 0)
0 1%) 1 1 =1 (Os=1 = =1)F.(0 0 =1)

Since the components of the input patterns are nonnegative and the components of
the weight vector are nonpositive, the response of the net will be negative (or zero).

64

Simple Neural Nets for Pattern Classification Chap. 2 Seand:

X2

X1

Figure 2.16 Decision boundary after
second training input.

To complete the first epoch of training, we present the fourth training pattern:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(7 Meninl) (wy wy b)
(0 0 =ill)
(U 0 1) =l -1 — 1 O 0 0 (© 0 =1

The response for all of the input patterns is ne
since the response for input pattern (1,
The second epoch of training yiel

gative for the weights derived: but 1
1) is not correct, we are not finished.

ds the following weight updates for the first

input: a
WEIGHT

INPUT NET ouT TARGET CHANGES WEIGHTS T

(§

(x1 x5 1) (wy wy b) |

(0 0 gl (

(1 1 0)

The separating lines become

X ol = 2
and

X+ x = -2,

1ap. 2

- after

tern:

'S
b)
=1
—-1)

I; but

e first

b)
-1)
0)

Sec. 2.3 Perceptron 65

The graph in Figure 2.17 shows that the response of the net will now be correct for
(1, 1).

Figure 2.17 Boundary after first train-
ing input of second epoch.

For the second input in the second epoch, we have:

WEIGHT
INPUT NET OUT TARGET CHANGES WEIGHTS

(a T 1) (w;, w» b)
(1 1 0)
(1 O =10 1 1 = (=1 0 “=1)"(0 1 -1)

and

The graph in Figure 2.18 shows that the response of the net will now be correct
(negative) for the input points (1, 0) and (0, 0); the response for input points (0, 1)
and (1, 1) will be 0, since the net input would be 0, which is between —.2 and .2
@ = .2).

In the second epoch, the third input yields:

WEIGHT

INPUT NET OUT TARGET CHANGES

66

X2

*1

Simple Neural Nets for Pattern Classification

Figure 2.18 Boundary

Chap. J

after second

input of second epoch.

Again, the response will be negative for all of the input.
To complete the second epoch of training, we present the fourth training pat-

tern:

INPUT
(x; X2
0 0

The results for the third epoch are:

INPUT
(x X2
(1 |
(1 0
(0 1
0 0

The results fo

(1
(1
(0
(1

S = O =

NET

NET

=2

0
==
=2

ouT

ouTt

=1

0
|l
=

the fourth epoch are:

=
=]
=l

TARGET

TARGET

WEIGHTS
CHANGE
0 0 -0
WEIGHT
CHANGES
(1 1 1)
(=1 0 -1
(1) 0 0)
(0 0 0)
(1 1 1)
(=1 Q=1
(U] ==y)

(0 0 0)

WEIGHTS
(wy w, b)
(1] 0 —2)
(] 0 =)

WEIGHTS
(W wy b)
(U 0 -2
(1 1 =i}
(U 1 —2)
(0] | —7)
0 1 —2)
(1 2 -1
(U] 2 =2
(0] | -3)
(U 1 =3)

p. 2

cond

pat-

b)
£9)

= 1)
—2)

=7
-2)

=)
_‘))

)

Sec.; 2.3 Perceptron

For the fifth epoch, we have

(1 IO = =1 1
(1 o D =l —1 —1
(0 [51y 0 0 =]
(0 05y =S =41 =il

and for the sixth epoch,

)y i = 1
1) 0 0 —
)Rl =i =5
W =) 1 =i

1
1

S = O =

(
(
(0
(0

The results for the seventh epoch are:

(1 ==l 0 0 1
(1 031 0 0 =
0 15 1) 0 0 =1
0 {1jm o | —1 ||

The eighth epoch yields

(1 33010 =1 —=1 1
(1 (0 SR) —1 —1 —1
0 IS 0 0 -1
(] RN —4 -1 —1
and the ninth
(1 1=y 0 0 1
(1 0 “C1) 0 0 =1
(0 = —1 —1 —1
(0 0 1 —4 —1 -1

(1 L o) 1 1 1
(1 0 il i —1 ==l
0 DI Pl =1 il

1)

(1 1 1)
0 0 0)
0 AL =)
(U 0 0)
(1 1 1)
=l 0 =1
0 0 0)
(U 0 0)
(1 1 1)
(-1 0 5=11)
(0 il = 1)
0 0 0)
(1 1 1)
(0 0 0)
0 1] B i)
() 0 0)
(1 1 1)
(=1 = =1l
(0 0 0)
(U 0 0)
0 0 0)
(1] 0 0)
0 0 0)
0

(1
(1
(1

2
(1
(1
(1

67

—_ =
| |

W W NN

e s U

_’))
=3
-3)
~3)

NN

~2)
~-3)
—4)
—4)

W W

[SO $S]

-3)
-3)
—4)
_4)

RN W W

w

—3)
—4)
—4)

w W

~4)
—4)
—4)

W W W W

68 Simple Neural Nets for Pattern Classification Chap. 2 Sec. 2.3

Thus, the positive response is given by all points such that Example
2x1 4+ 3x; — 4> .2, Tt.l(
0 is
with boundary line
Xp= —=x; + =,
? e
and the negative response is given by all points such that
2x; + 3x> — 4 < =2,
with boundary line
. 2 0 19
== =% —
: 37 45
(see Figure 2.19.)
In

N"Z

\ Si

- +
It
improv
thanal
= = x1 are claf
from bi
Figure 2.19 Final decision boundaries W
for AND function in perceptron learning. problel
Other
Since the proof of the perceptron learning rule convergence theorem (Section Exampl
2.3.4) shows that binary input is not required, and in previous examples bipolar T
input was often preferable, we consider again the previous example, but with t
bipolar inputs, an adjustable bias, and 6 = 0. This variation provides the most 5

direct comparison with Widrow-Hoff learning (an ADALINE net), which we con- v
sider in the next section. Note that it is not necessary to modify the training set 0
so that all patterns are mapped to +1 (as is done in the proof of the perceptron W
learning rule convergence theorem); the weight adjustment is rx whenever the 1
response of the net to\input vector x is incorrect. The target value is still bipolar. €

