FUNDAMENTALS
OF NEURAL NETWORKS

ARCHITECTURES, ALGORITHMS, AND APPLICATIONS

Laurene Fausett

!
j Florida Institute of Technology
|
|
I
|

U

Prentice Hall, Upper Saddle River, New Jersey 07458

CHAPTER 2

Simple Neural Nets
for Pattern Classification

2.1 GENERAL DISCUSSION

One of the simplest tasks that neural nets can be trained to perform is pattern
classification. In pattern classification problems, each input vector (pattern) be-
longs, or does not belong, to a particular class or category. For a neural net
approach, we assume we have a set of training patterns for which the correct
classification is known. In the simplest case, we consider the question of mem-
bership in a single class. The output unit represents membership in the class with
a response of 1; a response of — 1 (or 0 if binary representation is used) indicates
that the pattern is not a member of the class. For the single-layer nets described
in this chapter, extension to the more general case in which each pattern may or
may, not. helong te any, of. several dasses is immediate. T i ek, ek s oum
output unit for each class. Pattern classification is one type of pattern recognition;
the associative recall of patterns (discussed in Chapter 3) is another.

Pattern classification problems arise in many areas. In 1963, Donald Specht
(a student of Widrow) used neural networks to detect heart abnormalities with
EKG types of data as input (46 measurements). The output was “‘normal’” or
““abnormal,”” with an “‘on’’ response signifying normal [Specht, 1967; Caudill &
Butler, 1990]. In the early 1960s, Minsky and Papert used neural nets to classifty
input patterns as convex or not convex and connected or not connected [Minsky
& Papert, 1988]. There are many other examples of pattern classification problems

40 Simple Neural Nets for Pattern Classification Chap. 2

being solved by neural networks, both the simple nets described in this chapter,
other early nets not discussed here, and multilayer nets (especially the backprop-
agation nets described in Chapter 6).

In this chapter, we shall discuss three methods of training a simple single-
layer neural net for pattern classification: the Hebb rule, the perceptron learning
rule, and the delta rule (used by Widrow in his ADALINE neural net). First, how-
ever, we discuss some issues that are common to all single-layer nets that perform
pattern classification. We conclude the chapter with some comparisons of the
nets discussed and an extension to a multilayer net, MADALINE.

Many real-world examples need more sophisticated architecture and training
rules because the conditions for a single-layer net to be adequate (see Section
2.1.3) are not met. However, if the conditions are met approximately, the results
may be sufficiently accurate. Also, insight can be gained from the more simple
nets, since the meaning of the weights may be easier to interpret.

2.1.1 Architecture

The basic architecture of the simplest possible neural networks that perform pat-
tern classification consists of a layer of input units (as many units as the patterns
to be classified have components) and a single output unit. Most neural nets we
shall consider in this chapter use the single-layer architecture shown in Figure
2.1. This allows classification of vectors, which are n-tuples, but considers mem-
bership in only one category.

Input Output Figure 2.1 Single-layer net for pattern
Units Unit classification.

An example of a net that classifies the input into several categories is con-
sidered in Section 2.3.3. This net is a simple extension of the nets that perform

Sec. 24

a single
tilayer e

2.1.2 1

A bias a
always
included

where

So
for the ¢

where

Howeve
the use

Example

In:
int
is |
ide
on

Sec. 2.1 General Discussion 41

2
a single classification. The MADALINE net considered in Section 2.4.5 is a mul-
): tilayer extension of the single-layer ADALINE net.
| 2.1.2 Biases and Thresholds
% A bias acts exactly as a weight on a connection from a unit whose activation is
. always 1. Increasing the bias increases the net input to the unit. If a bias is
! included, the activation function is typically taken to be
1 if net = 0;
g F(net) = {—1 if net < 0;
1
S where
2 net = b + E.X,‘M’,‘.
Some authors do not use a bias weight, but instead use a fixed threshold 6
for the activation function. In that case,
i, 1 if net = 0;
[f(“e‘)“{—l if net < 0;
- where

= net = E XiWi.
i

However, as the next example will demonstrate, this is essentially equivalent to
the use of an adjustable bias.

Example 2.1 The role of a bias or a threshold

In this example and in the next section, we consider the separation of the input space
into regions where the response of the net is positive and regions where the response
is negative. To facilitate a graphical display of the relationships, we illustrate the
ideas for an input with two components while the output is a scalar (i.e., it has only
one component). The architecture of these examples is given in Figure 2.2.

® :
4 Input Output Figure 2.2. Single-layer neural network
Units Unit for logic functions.

42

Simple Neural Nets for Pattern Classification Chap. 2

The boundary between the values of x, and x» for which the net gives a positive
response and the values for which it gives a negative response is the separating line

b + Xiwy + Xowa = 0.,

or (assuming that w, # 0),

The requirement for a positive response from the output unit is that the net input it
receives, namely, b + x;w, + xow», be greater than 0. During training, values of
wi, w», and b are determined so that the net will have the correct response for the
training data.

If one thinks in terms of a threshold, the requirement for a positive response
from the output unit is that the net input it receives, namely, x;w, + x2w», be greater
than the threshold. This gives the equation of the line separating positive from neg-
ative output as

Xiwp + Xaowa = 0,

or (assuming that w, # 0),

Wo i Wo

During training, values of w, and w, are determined so that the net will have
the correct response for the training data. In this case, the separating line cannot
pass through the origin, but a line can be found that passes arbitrarily close to the
origin.

The form of the separating line found by using an adjustable bias and the form
obtained by using a fixed threshold illustrate that there is no advantage to including
both a bias and a nonzero threshold for a neuron that uses the step function as its
activation function. On the other hand, including neither a bias nor a threshold is
equivalent to requiring the separating line (or plane or hyperplane for inputs with
more components) to pass through the origin. This may or may not be appropriate
for a particular problem.

As an illustration of a pseudopsychological analogy to the use of a bias,

consider a simple (artificial) neural net in which the activation of the neuron
corresponds to a person’s action, “*Go to the ball game.’’ Each input signal cor-
responds to some factor influencing the decision to ‘‘go’” or ‘‘not go’’ (other
possible activities, the weather conditions, information about who is pitching,
etc.). The weights on these input signals correspond to the importance the person
places on each factor. (Of course, the weights may change with time, but methods
for modifying them are not considered in this illustration.) A bias could represent
a general inclination to “‘go’” or “‘not g0,”” based on past experiences. Thus, the
bias would be modifiable, but the signal to it would not correspond to information
about the specific game in question or activities competing for the person’s time.

Sec2ul

Th
essary t
threshol
simple €
individu
magnitu
possibili

2.13 1

For eacl
determi
presente
that is s
particul;
discuss
desired
“no’” if
“no”’ b
respons
functior
net inpt

it is eas
region 3
the rela

Depend
a line, ¢

If
which t
all of tt
other s
rable.”
linearly
that mu
single-l

It
triples)
the apr

ve
ne

Sec. 2.1 General Discussion 43

The threshold for this *‘decision neuron’’ indicates the total net input nec-
essary to cause the person to ‘‘go,’’ i.e., for the decision neuron to fire. The
threshold would be different for different people; however, for the sake of this
simple example, it should be thought of as a quantity that remains fixed for each
individual. Since it is the relative values of the weights, rather than their actual
magnitudes, that determine the response of the neuron, the model can cover all
possibilities using either the fixed threshold or the adjustable bias.

2.1.3 Linear Separability

For each of the nets in this chapter, the intent is to train the net (i.e., adaptively
determine its weights) so that it will respond with the desired classification when
presented with an input pattern that it was trained on or when presented with one
that is sufficiently similar to one of the training patterns. Before discussing the
particular nets (which is to say, the particular styles of training), it is useful to
discuss some issues common to all of the nets. For a particular output unit, the
desired response is a ‘‘yes’’ if the input pattern is a member of its class and a
“no’ if it is not. A “‘yes’’ response is represented by an output signal of 1, a
“‘no’’ by an output signal of —1 (for bipolar signals). Since we want one of two
responses, the activation (or transfer or output) function is taken to be a step
function. The value of the function is 1 if the net input is positive and — 1 if the
net input is negative. Since the net input to the output unit is

y_in =b + E XiWi,
i

it is easy to see that the boundary between the region where y_in > 0 and the
region where y_in < 0, which we call the decision boundary, is determined by
the relation

b + EX,'M’,' —5()y

Depending on the number of input units in the network, this equation represents
a line, a plane, or a hyperplane.

If there are weights (and a bias) so that all of the training input vectors for
which, the. cumeat reupsr is + L iR U1 R 9dr i the Rsiom homdany 2ad
all of the training input vectors for which the correct response is — 1 lie on the
other side of the decision boundary, we say that the problem is “‘linearly sepa-
rable.”” Minsky and Papert [1988] showed that a single-layer net can learn only
linearly separable problems. Furthermore, it is easy to extend this result to show
that multilayer nets with linear activation functions are no more powerful than
single-layer nets (since the composition of linear functions is linear).

It is convenient, if the input vectors are ordered pairs (or at most ordered
triples), to graph the input training vectors and indicate the desired response by
the appropriate symbol (**+"" or **—""). The analysis also extends easily to nets

44 Simple Neural Nets for Pattern Classification Chap. 2

with more input units; however, the graphical display is not as convenient. The
region where y is positive is separated from the region where it is negative by the
line

Wi b

o= e =

Wo Wo
These two regions are often called decision regions for the net. Notice in the
following examples that there are many different lines that will serve to separate
the input points that have different target values. However, for any particular
line, there are also many choices of w,, w,, and b that give exactly the same line.
The choice of the sign for b determines which side of the separating line corre-
sponds to a + 1 response and which side to a — 1 response.

There are four different bipolar input patterns we can use to train a net with
two input units. However, there are two possible responses for each input pattern,
so there are 2* different functions that we might be able to train a very simple
net to perform. Several of these functions are familiar from elementary logic, and
we will use them for illustrations, for convenience. The first question we consider
is, For this very simple net, do weights exist so that the net will have the desired
output for each of the training input vectors?

Example 2.2 Response regions for the Anp function

The Anbp function (for bipolar inputs and target) is defined as follows:

INPUT (x4, Xx2) OUTPUT (t)

(1, 1) il
(15 =1 =
(=15 =
(—1, —1) =]
The desired responses can be illustrated as shown in Figure 2.3. One possible de-
cision boundary for this function is shown in Figure 2.4.

An example of weights that would give the decision boundary illustrated in
the figure, namely, the separating line
Xy ==yt

b= -1,
wy = 1,
wo = 1.

The choice of sign for b is determined by the requirement that

b+ xiwy; + xaw2 <0

where x; = 0 and x> = 0. (Any point that is not on the decision boundary can be
used to determine which side of the boundary is positive and which is negative; the
origin is particularly convenient to use when it is not on the boundary.)

Sec?

€

—— N e (D

Sec. 2.1

General Discussion

x2

X1

X1

Figure 2.3 Desired response for the
logic function AND (for bipolar inputs).

Figure 2.4 The logic function AnD,
showing a possible decision boundary.

46 Simple Neural Nets for Pattern Classification Chap. 2 See! 2!

Example 2.3 Response regions for the Or function 1
The logical Or function (for bipolar inputs and target) is defined as follows: negral
points
INPUT (x4, X2) OUTPUT (1) sified
(1. 1) 0] “01‘ -
0, =1 +1 e .
=11 +1
: : bound;
(-1, =1) —1
Examj
The weights must be chosen to provide a separating line, as illustrated in Figure learne:
2.5. One example of suitable weights is P
layer t
b =1,
Exampl
Wi = l,
1
Wy = l,

giving the separating line
X2 = —x; — 1.
The choice of sign for b is determined by the requirement that
b+ xiw, + xowy >0

where x; = 0 and x, = 0.

X2

X1

- +
\ Figure 2.5 The logic function Or, show-
ing a possible decision boundary.

gure

10W-

Sec. 2.1

General Discussion 47

The preceding two mappings (which can each be solved by a single-layer
neural net) illustrate graphically the concept of linearly separable input. The input
points to be classified positive can be separated from the input points to be clas-
sified negative by a straight line. The equations of the decision boundaries are
not unique. We will return to these examples to illustrate each of the learning
rules in this chapter.

Note that if a bias weight were not included in these examples, the decision
boundary would be forced to go through the origin. In many cases (including
Examples 2.2 and 2.3), that would change a problem that could be solved (i.e.,
learned, or one for which weights exist) into a problem that could not be solved.

Not all simple two-input, single-output mappings can be solved by a single-
layer net (even with a bias included), as is illustrated in Example 2.4.

Example 2.4 Response regions for the Xor function

The desired response of this net is as follows:

INPUT (x1,Xx2) OUTPUT (t)

(1, 1) =il
1, =1 +1
(S0 +1
(-1, =1 —i

It is easy to see that no single straight line can separate the points for which
a positive response is desired from those for which a negative response is desired.

X2

X1

Figure 2.6 Desired response for the
logic function Xor.

