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1.2 WHAT IS A NEURAL NET?

1.2.1 Artificial Neural Networks

An artificial neural network is an information-processing system that has certain
performance characteristics in common with biological neural networks. Artificial
neural networks have been developed as generalizations of mathematical models
of human cognition or neural biology, based on the assumptions that:

1. Information processing occurs at many simple elements called neurons.
2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural
net, multiplies the signal transmitted.

4. Each neuron applies an activation function (usually nonlinear) to its net input
(sum of weighted input signals) to determine its output signal.

A neural network is characterized by (1) its pattern of connections between the
neurons (called its architecture), (2) its method of determining the weights on the
connections (called its training, or learning, algorithm), and (3) its activation
function.

Since what distinguishes (artificial) neural networks from other approaches
to information processing provides an introduction to both sow and when to use
neural networks, let us consider the defining characteristics of neural networks
further.

A neural net consists of a large number of simple processing elements called
neurons, units, cells, or nodes. Each neuron is connected to other neurons by
means of directed communication links, each with an associated weight. The
weights represent information being used by the net to solve a problem. Neural
nets can be applied to a wide variety of problems, such as storing and recalling
data or patterns, classifying patterns, performing general mappings from input
patterns to output patterns, grouping similar patterns, or finding solutions to con-
strained optimization problems.

Each neuron has an internal state, called its activation or activity level, which
is a function of the inputs it has received. Typically, a neuron sends its activation
as a signal to several other neurons. It is important to note that a neuron can send
only one signal at a time, although that signal is broadcast to several other neurons.

For example, consider a neuron Y, illustrated in Figure 1.1, that receives
inputs from neurons X,, X,, and X3. The activations (output signals) of these
neurons are x;, x», and xs, respectively. The weights on the connections from
X1, X>, and X5 to neuron Y are w,, w», and w3, respectively. The net input, y_in,
to neuron Y is the sum of the weighted signals from neurons X, X», and X5, i.c.,

y_in = wix; + woxs + wixs.
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Figure 1.1 A simple (artificial) neuron.

The activation y of neuron Y is given by some function of its net input,
y = f(y_in), e.g., the logistic sigmoid function (an S-shaped curve)

|

T

or any of a number of other activation functions. Several common activation
functions are illustrated in Section 1.4.3.

Now suppose further that neuron Y is connected to neurons Z, and Z-, with
weights v; and v», respectively, as shown in Figure 1.2. Neuron Y sends its signal
y to each of these units. However, in general, the values received by neurons Z,
and Z, will be different, because each signal is scaled by the appropriate weight,
vy Or v. In a typical net, the activations z, and z, of neurons Z and Z-> would
depend on inputs from several or even many neurons, not just one, as shown in
this simple example.

Although the neural network in Figure 1.2 is very simple, the presence of
a hidden unit, together with a nonlinear activation function, gives it the ability to
solve many more problems than can be solved by a net with only input and output
units. On the other hand, it is more difficult to train (i.e., find optimal values for
the weights) a net with hidden units. The arrangement of the units (the architecture
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Figure 1.2 A very simple neural network.
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See. 1.2 What is a Neural Net?
of the net) and the method of training the net are discussed further in Section 1.4.
A detailed consideration of these ideas for specific nets, together with simple
examples of an application of each net, is the focus of the following chapters.

1.2.2 Biological Neural Networks

The extent to which a neural network models a particular biological neural system
varies. For some researchers, this is a primary concern; for others, the ability of
the net to perform useful tasks (such as approximate or represent a function) is

. more important than the biological plausibility of the net. Although our interest
lies almost exclusively in the computational capabilities of neural networks, we
shall present a brief discussion of some features of biological neurons that may
help to clarify the most important characteristics of artificial neural networks. In
addition to being the original inspiration for artificial nets, biological neural sys-
tems suggest features that have distinct computational advantages.

There is a close analogy between the structure of a biological neuron (i.e.,
a brain or nerve cell) and the processing element (or artificial neuron) presented
in the rest of this book. In fact, the structure of an individual neuron varies much
less from species to species than does the organization of the system of which
the neuron is an element.

A biological neuron has three types of components that are of particular
interest in understanding an artificial neuron: its dendrites, soma, and axon. The
many dendrites receive signals from other neurons. The signals are electric im-
pulses that are transmitted across a synaptic gap by means of a chemical process.
The action of the chemical transmitter modifies the incoming signal (typically, by
scaling the frequency of the signals that are received) in a manner similar to the
action of the weights in an artificial neural network.

The soma, or cell body, sums the incoming signals. When sufficient input
is received, the cell fires; that is, it transmits a signal over its axon to other cells.
It is often supposed that a cell either fires or doesn’t at any instant of time, so
that transmitted signals can be treated as binary. However, the frequency of firing
varies and can be viewed as a signal of either greater or lesser magnitude. This
corresponds to looking at discrete time steps and summing all activity (signals
received or signals sent) at a particular point in time.

The transmission of the signal from a particular neuron is accomplished by
an action potential resulting from differential concentrations of ions on either side
of the neuron’s axon sheath (the brain’s ‘‘white matter’’). The ions most directly
involved are potassium, sodium, and chloride.

A generic biological neuron is illustrated in Figure 1.3, together with axons
from two other neurons (from which the illustrated neuron could receive signals)
and dendrites for two other neurons (to which the original neuron would send

signals). Several key features of the processing elements of artificial neural net-
works are suggested by the properties of biological neurons, viz., that:
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We also illustrate several typical activation functions and conclude the section
with a summary of the notation we shall use throughout the rest of the text.

1.4.1 Typical Architectures

Often, it is convenient to visualize neurons as arranged in layers. Typically, neu-
rons in the same layer behave in the same manner. Key factors in determining
the behavior of a neuron are its activation function and the pattern of weighted
connections over which it sends and receives signals. Within each layer, neurons
usually have the same activation function and the same pattern of connections to
other neurons. To be more specific, in many neural networks, the neurons within
a layer are either fully interconnected or not interconnected at all. If any neuron
in a layer (for instance, the layer of hidden units) is connected to a neuron in
another layer (say, the output layer), then each hidden unit is connected to every
output neuron.

The arrangement of neurons into layers and the connection patterns within
and between layers is called the net architecture. Many neural nets have an input
layer in which the activation of each unit is equal to an external input signal. The
net illustrated in Figure 1.2 consists of input units, output units, and one hidden
unit (a unit that is neither an input unit nor an output unit).

Neural nets are often classified as single layer or multilayer. In determining
the number of layers, the input units are not counted as a layer, because they
perform no computation. Equivalently, the number of layers in the net can be
defined to be the number of layers of weighted interconnect links between the
slabs of neurons. This view is motivated by the fact that the weights in a net
contain extremely important information. The net shown in Figure 1.2 has two
layers of weights.

The single-layer and multilayer nets illustrated in Figures 1.4 and 1.5 are
examples of feedforward nets—nets in which the signals flow from the input units
to the output units, in a forward direction. The fully interconnected competitive
net in Figure 1.6 is an example of a recurrent net, in which there are closed-loop
signal paths from a unit back to itself.

Single-Layer Net

A single-layer net has one layer of connection weights. Often, the units can be
distinguished as input units, which receive signals from the outside world, and
output units, from which the response of the net can be read. In the typical single-
layer net shown in Figure 1.4, the input units are fully connected to output units
but are not connected to other input units, and the output units are not connected
to other output units. By contrast, the Hopfield net architecture, shown in Figure
3.7, is an example of a single-layer net in which all units function as both input
and output units.

For pattern classification, each output unit corresponds to a particular cat-
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Input One Layer Output
Units of Weights Units  Figure 1.4 A single-layer neural net.
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Figure 1.5 A multilayer neural net.
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1 Figure 1.6 Competitive layer.

egory to which an input vector may or may not belong. Note that for a single-
layer net, the weights for one output unit do not influence the weights for other
output units. For pattern association, the same architecture can be used, but now
the overall pattern of output signals gives the response pattern associated with
the input signal that caused it to be produced. These two examples illustrate the
fact that the same type of net can be used for different problems, depending on
the interpretation of the response of the net.

On the other hand, more complicated mapping problems may require a mul-
tilayer network. The characteristics of the problems for which a single-layer net
is satisfactory are considered in Chapters 2 and 3. The problems that require
multilayer nets may still represent a classification or association of patterns; the
type of problem influences the choice of architecture, but does not uniquely de-
termine it.

Multilayer net

A multilayer net is a net with one or more layers (or levels) of nodes (the so-
called hidden units) between the input units and the output units. Typically, there
is a layer of weights between two adjacent levels of units (input, hidden, or output).
Multilayer nets can solve more complicated problems than can single-layer nets,
but training may be more difficult. However, in some cases, training may be more
successful, because it is possible to solve a problem that a single-layer net cannot
be trained to perform correctly at all.

Competitive layer

A competitive layer forms a part of a large number of neural networks. Several
examples of these nets are discussed in Chapters 4 and 5. Typically, the inter-
connections between neurons in the competitive layer are not shown in the ar-
chitecture diagrams for such nets. An example of the architecture for a competitive
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layer is given in Figure 1.6; the competitive interconnections have weights of —e.
The operation of a winner-take-all competition, MAXNET [Lippman, 1987], is de-
scribed in Section 4.1.1.

1.4.2 Setting the Weights

In addition to the architecture, the method of setting the values of the weights
(training) is an important distinguishing characteristic of different neural nets. For
convenience, we shall distinguish two types of training—supervised and unsu-
pervised—for a neural network; in addition, there are nets whose weights are
fixed without an iterative training process.

Many of the tasks that neural nets can be trained to perform fall into the
areas of mapping, clustering, and constrained optimization. Pattern classification
and pattern association may be considered special forms of the more general
problem of mapping input vectors or patterns to the specified output vectors or
patterns.

There is some ambiguity in the labeling of training methods as supervised
or unsupervised, and some authors find a third category, self-supervised training,
useful. However, in general, there is a useful correspondence between the type
of training that is appropriate and the type of problem we wish to solve. We
summarize here the basic characteristics of supervised and unsupervised training
and the types of problems for which each, as well as the fixed-weight nets, is
typically used.

Supervised training

In perhaps the most typical neural net setting, training is accomplished by pre-
senting a sequence of training vectors, or patterns, each with an associated target
output vector. The weights are then adjusted according to a learning algorithm.
This process is known as supervised training.

Some of the simplest (and historically earliest) neural nets are designed to
perform pattern classification, i.e., to classify an input vector as either belonging
or not belonging to a given category. In this type of neural net, the output is a
bivalent element, say, either 1 (if the input vector belongs to the category) or — |
(if it does not belong). In the next chapter, we consider several simple single-
layer nets that were designed or typically used for pattern classification. These
nets are trained using a supervised algorithm. The characteristics of a classifi-
cation problem that determines whether a single-layer net is adequate are con-
sidered in Chapter 2 also. For more difficult classification problems, a multilayer
net, such as that trained by backpropagation (presented in Chapter 6) may be
better.

Pattern association is another special form of a mapping problem, one in
which the desired output is not just a ‘‘yes” or ‘‘no,” but rather a pattern. A
neural net that is trained to associate a set of input vectors with a corresponding
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set of output vectors is called an associative memory. If the desired output vector
is the same as the input vector, the net is an autoassociative memory; if the output
target vector is different from the input vector, the net is a heteroassociative
memory. After training, an associative memory can recall a stored pattern when
it is given an input vector that is sufficiently similar to a vector it has learned.
Associative memory neural nets, both feedforward and recurrent, are discussed
in Chapter 3.

Multilayer neural nets can be trained to perform a nonlinear mapping from
an n-dimensional space of input vectors (n-tuples) to an m-dimensional output
space—i.e., the output vectors are m-tuples.

The single-layer nets in Chapter 2 (pattern classification nets) and Chapter
3 (pattern association nets) use supervised training (the Hebb rule or the delta
rule). Backpropagation (the generalized delta rule) is used to train the multilayer
nets in Chapter 6. Other forms of supervised learning are used for some of the
nets in Chapter 4 (learning vector quantization and counterpropagation) and Chap-
ter 7. Each learning algorithm will be described in detail, along with a description
of the net for which it is used.

Unsupervised training

Self-organizing neural nets group similar input vectors together without the use
of training data to specify what a typical member of each group looks like or to
which group each vector belongs. A sequence of input vectors is provided, but
no target vectors are specified. The net modifies the weights so that the most
similar input vectors are assigned to the same output (or cluster) unit. The neural
net will produce an exemplar (representative) vector for each cluster formed. Self-
organizing nets are described in Chapters 4 (Kohonen self-organizing maps) and
Chapter 5 (adaptive resonance theory).

Unsupervised learning is also used for other tasks, in addition to clustering.
Examples are included in Chapter 7.

Fixed-weight nets

Still other types of neural nets can solve constrained optimization problems. Such
nets may work well for problems that can cause difficulty for traditional tech-
niques, such as problems with conflicting constraints (i.e., not all constraints can
be satisfied simultaneously). Often, in such cases, a nearly optimal solution (which
the net can find) is satisfactory. When these nets are designed, the weights are
set to represent the constraints and the quantity to be maximized or minimized.
The Boltzmann machine (without learning) and the continuous Hopfield net
(Chapter 7) can be used for constrained optimization problems.
Fixed weights are also used in contrast-enhancing nets (see Section 4.1).
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1.4.3 Common Activation Functions

As mentioned before, the basic operation of an artificial neuron involves summing
its weighted input signal and applying an output, or activation, function. For the
input units, this function is the identity function (see Figure 1.7). Typically, the
same activation function is used for all neurons in any particular layer of a neural
net, although this is not required. In most cases, a nonlinear activation function
is used. In order to achieve the advantages of multilayer nets, compared with the
limited capabilities of single-layer nets, nonlinear functions are required (since
the results of feeding a signal through two or more layers of linear processing
elements—i.e., elements with linear activation functions—are no different from
what can be obtained using a single layer).

(i) Identity function:
Fx), = x for all x.

Single-layer nets often use a step function to convert the net input, which
is a continuously valued variable, to an output unit that is a binary (1 or 0) or
bipolar (1 or —1) signal (see Figure 1.8). The use of a threshold in this regard is
discussed in Section 2.1.2. The binary step function is also known as the threshold
function or Heaviside function.

(if) Binary step function (with threshold 6):

] ifx=29
USRS {0 if x < 0

Sigmoid functions (S-shaped curves) are useful activation functions. The
logistic function and the hyperbolic tangent functions are the most common. They
are especially advantageous for use in neural nets trained by backpropagation,
because the simple relationship between the value of the function at a point and
the value of the derivative at that point reduces the computational burden during
training.

The logistic function, a sigmoid function with range from 0 to 1, is often

fx)

Figure 1.7 Identity function.
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J)

Figure 1.8 Binary step function.

used as the activation function for neural nets in which the desired output values
either are binary or are in the interval between 0 and 1. To emphasize the range
of the function, we will call it the binary sigmoid; it is also called the logistic
sigmoid. This function is illustrated in Figure 1.9 for two values of the steepness
parameter o.

(iif) Binary sigmoid:

ALY o

1 + exp(—ox)
f'(x) = af(x) [1 = f(x)].

As is shown in Section 6.2.3, the logistic sigmoid function can be scaled to
have any range of values that is appropriate for a given problem. The most com-
mon range is from — 1 to 1; we call this sigmoid the bipolar sigmoid. 1t is illustrated
in Figure 1.10 for ¢ = 1.

f(x)

fx)

i Ly Ty e e

Figure 1.9 Binary sigmoid. Steepness parameters ¢ = | and o = 3.
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Figure 1.10 Bipolar sigmoid.

(iv) Bipolar sigmoid:

sitsneds o Jitan
1 + exp(—ox)

gx) =2f(x) — 1 =

1 — exp(—ox)
1 + exp(—ox)

g'(x) g[l + gl — g)].

The bipolar sigmoid is closely related to the hyperbolic tangent function,
which is also often used as the activation function when the desired range of
output values is between —1 and 1. We illustrate the correspondence between
the two for ¢ = 1. We have

1 — exp(—=x)

glx) = 1 + exp(—x)

The hyperbolic tangent is
exp(x) — exp(—x)

gl exp(x) + exp(—x)
1 = exp(—=2x)
1 4 exp(—2x)°

The derivative of the hyperbolic tangent is
h(x) =[1 + h(x)][1 — h(x)].

For binary data (rather than continuously valued data in the range from 0
to 1), it is usually preferable to convert to bipolar form and use the bipolar sigmoid
or hyperbolic tangent. A more extensive discussion of the choice of activation
functions and different forms of sigmoid functions is given in Section 6.2.2.
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1.4.4 Summary of Notation

The following notation will be used throughout the discussions of specific neural
nets, unless indicated otherwise for a particular net (appropriate values for the
parameter depend on the particular neural net model being used and will be dis-
cussed further for each model):

Xiy Y; Activations of units X;, ¥;, respectively:
For input units X,

X; = input signal;
for other units Y;,
Vo= f()’—i”j)-

Wij Weight on connection from unit X; to unit ¥;:
Beware: Some authors use the opposite convention, with w;; de-
noting the weight from unit Y; to unit X,.

b; Bias on unit ¥;:
A bias acts like a weight on a connection from a unit with a constant
activation of 1 (see Figure 1.11).

y—in; Net input to unit ¥;:

ydry = b; + ¥ 2w,
i

w Weight matrix:
W = {w;}
W, Vector of weights:
W, = (Wi wajyo.., wo )T

This is the jth column of the weight matrix.
| x|l Norm or magnitude of vector x.
0; Threshold for activation of neuron ¥;:
A step activation function sets the activation of a neuron to 1 when-
ever its net input is greater than the specified threshold value 0;;

otherwise its activation is 0 (see Figure 1.8).

S Training input vector:
S = (81, -2y Siy v, Sn)
t Training (or target) output vector:
1 S S i e
X Input vector (for the net to classify or respond to):

X =M (EepT e e
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Aw;; Change in w;;:
AM’,‘j = [11’,'_]' (HCW) - Wiy (Old)]

o Learning rate:
The learning rate is used to control the amount of weight adjust-
ment at each step of training.

Matrix multiplication method for calculating net input

If the connection weights for a neural net are stored in a matrix W = (w;;), the
net input to unit ¥; (with no bias on unit j) is simply the dot product of the vectors
X = (X1, ...,X;5...,x,) and w; (the jth column of the weight matrix):

Y1 = X W

= 2 XiWij .
i=1
Bias
A bias can be included by adding a component x, = 1 to the vector X, 1.€.,
x = (1, x1,...,x,...,x,). The bias is treated exactly like any other weight,

i.e., wo; = b;. The net input to unit Y; is given by

YL S =X W

n
2 XiWij
i=0

n

woj + X xiwi

i=1

Il

n
= bj + E .X,‘H’,'j .

i=1

The relation between a bias and a threshold is considered in Section 2.1.2.

W"j
@—_/ Figure 1.11 Neuron with a bias.




