
104 Chapter 3. Solving Problems by Searching

To test the heLrristic iLrncti,,11. ;, , u1d 1t,,2, we generated 1200 random problems with
solution lengths from I to l- i il rLrr elch even number) and solved them with iteratire
deepening search and u ith .\' irle :i.ir,-h Lrsing both h1 and /r2. Figure 3.29 gives the avera-ue

number of nodes generated L,r :.r.h rtrategy and the eff'ective branching factor. The results

suggest that lt2 is better than ; . .rnrl i: far better than using iterative deepening search. Even

for small problems with 11: rl. .\- '.,. irh /r2 is 50,000 times more efficient than uninformed
iterative deepening search.

Effective Branching Factor

N(hz)

t.19
1.45

1.30

t.24
1.22

t.24
1.23

t.25
t.26
t.27
1.28

1.26

DO[IINATION

Figure 3.29 Comparison of the search costs and effective branching factors for the
ITERATIVE-DnEprNINc-SEARCH and ,{ algorithms with hr, h2. Data are averaged over
I 00 instances of the S-puzzle for each of various solution lengths d.

One might ask whether h2 is cLlwo,t,s better than h1. The answer is "Essentially, yes." It
is easy to see from the definitions of the two heuristics that, for any node n, h2(rt) > fu('n).
We thus say that /r,2 dominates h1. Domination translates directly into efficiency: ,{ usin-e

hz will never expand more nodes than ,{ using h1 (except possibly for some nodes with

f ('"):C*). The argument is simple. Recall the observation on page91 that every node

with /(n) < C* will surely be expanded. This is the same as saying that every node with
h(n) < C" - g(n) will surely be expanded. But because li2 is at least as big as /r,1 for all
nodes, every node that is surely expanded by ,{ search with h,2 will also surely be expanded

with h1, and h1 might cause other nodes to be expanded as well. Hence, it is generalll'

better to use a heuristic function with higher values, provided it is consistent and that the

computation time for the heuristic is not too long.

3.6.2 Generating admissible heuristics from relaxed problems

We have seen that both h1 (misplaced tiles) and hz (Manhattan distance) are fairly good

heuristics for the B-puzzle and that h2 is better. How might one have come up with hz? Is it
possible for a computer to invent such a heuristic mechanically?

hr and h2 are esti nates of the remaining path length for the \-ptzz7e, but they are also

perfectly accurate path engths for simplified versions of the puzzle. If the rules of the puzzle

Search Cost (nodes _senerated)

d IDS ,t(ftr),{(h ) IDS A(hr)

2

4

6

8

l0
12

l4
t6
l8
20
22

24

10

1t2
680

6384
47 t21

364403s

6

l3
20

39

93
227

s39
1301

3056
7276

l 8094

39135

6

t2
18

25

39

73

I l3
21t
363

676

t2t9
t64l

2.45

2.87
1-la

2.80
2.79
2.78

1.79

1.48

t.34
r.33
1.38

1.42

1.44

1.45

1.46

1.41

1.48

1.48

-

I -@-


