Chapter 7. Logical Age=

effect if there is a wall in front of the agent. The action Grab can be used to pick up ¢
object that is in the same square as the agent. The action Shoot can be used to fire
arrow in a straight line in the direction the agent is facing. The arrow continues unt::
either hits (and hence kills) the wumpus or hits a wall. The agent only has one arros
so only the first Shoot action has any effect.

¢ Sensors: The agent has five sensors, each of which gives a single bit of information

— In the square containing the wumpus and in the directly (not diagonally) adjacss
squares the agent will perceive a stench.

— In the squares directly adjacent to a pit, the agent will perceive a breeze.
— In the square where the gold is, the agent will perceive a glitter.
— When an agent walks into a wall, it will perceive a bump.

— When the wumpus is killed, it emits a woeful scream that can be perceived =
where in the cave.

The percepts will be given to the agent in the form of a list of five symbols; for examg
if there is a stench and a breeze, but no glitter, bump, or scream, the agent will rece:
the percept [Stench, Breeze, None, None, None].

Exercise 7.1 asks you to define the wumpus environment along the various dimensions gis
in Chapter 2. The principal difficulty for the agent is its initial ignorance of the configurat::
of the environment; overcoming this ignorance seems to require logical reasoning. In m
instances of the wumpus world, it is possible for the agent to retrieve the gold safely. Oce
sionally, the agent must choose between going home empty-handed and risking death to &
the gold. About 21% of the environments are utterly unfair, because the gold is in a pit
surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown
Figure 7.2. The agent’s initial knowledge base contains the rules of the environment, as lisz

(/\-/
4 Sqens ~ Breeze —| IAE

SSSS < Broass

2 éstench g ;@

1 % “reze— | WM |75z
START

1 2 3 4

Figure 7.2 A typical wumpus world. The agent is in the bottom left corner.

cal Agent

pick up
d to fire =
ues until s
one arrow

rmation:

ly) adjaces

rceived an¥

for exampie
- will receng

nsions gived
configurati€
ing. In moss
safely. Oce
' death to fim
is in a pit =

rent shown !
ment, as list

The Wumpus World 199

previously; in particular, it knows that it isin [1,1] and that [1,1] is a safe square. We will see
how its knowledge evolves as new percepts arrive and actions are taken.

The first percept is [None, None, None, None, Nonel, from which the agent can con-
clude that its neighboring squares are safe. Figure 7.3(a) shows the agent’s state of knowledge
at this point. We list (some of) the sentences in the knowledge base using letters such as B
(breezy) and OK (safe, neither pit nor wumpus) marked in the appropriate squares. Fig-
ure 7.2, on the other hand, depicts the world itself.

1,4 24 34 44 = Agent 1,4 2,4 34 44

B =Breeze
G = Glitter, Gold
OK = Safe square
1,3 2,3 3,3 4,3 P =Pit 1,3 2,3 3,3 4,3
S = Stench
V = Visited
W = Wumpus
1,2 2,2 3,2 4,2 1,2 2,2 3,2 42
P?
OK OK
1,1 2,1 3.1 41 1,1 2.1 31 41
. ; ;) , vy T pe ’
A\ B
OK OK OK OK
(a) (b)

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial sit-
uation, after percept [None, None, None, None, None]. (b) After one move, with percept
[None, Breeze, None, None, None].

From the fact that there was no stench or breeze in [1,1], the agent can infer that [1,2]
and [2,1] are free of dangers. They are marked with an OK to indicate this. A cautious agent
will move only into a square that it knows is OK. Let us suppose the agent decides to move
forward to [2,1], giving the scene in Figure 7.3(b).

The agent detects a breeze in [2,1], so there must be a pit in a neighboring square. The
pit cannot be in [1,1], by the rules of the game, so there must be a pit in [2,2] or [3,1] or both.
The notation P? in Figure 7.3(b) indicates a possible pit in those squares. At this point, there
is only one known square that is OK and has not been visited yet. So the prudent agent will
turn around, go back to [1,1], and then proceed to [1,2].

The new percept in [1,2] is [Stench, None, None, None, None], resulting in the state
of knowledge shown in Figure 7.4(a). The stench in [1,2] means that there must be a wumpus
nearby. But the wumpus cannot be in [1,1], by the rules of the game, and it cannot be in [2,2]
(or the agent would have detected a stench when it was in [2,1]). Therefore, the agent can
infer that the wumpus is in [1,3]. The notation W ! indicates this. Moreover, the lack of a
Breeze in [1,2] implies that there is no pit in [2,2]. Yet we already inferred that there must
be a pit in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult
inference, because it combines knowledge gained at different times in different places and

202

Chapter 7. Logical Agen

LOGICAL INFERENCE
MODEL CHECKING

Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1], given
observations of nothing in [1,1] and a breeze in [2,1]. (a) Models of the knowledge base and
a1 (no pitin [1,2]). (b) Models of the knowledge base and a (no pit in [2,2]).

agent is interested (among other things) in whether the adjacent squares [1,2], [2,2], and [3.
contain pits. Each of the three squares might or might not contain a pit, so (for the purpos:
of this example) there are 2° = 8 possible models. These are shown in Figure 7.5.3

The KB is false in models that contradict what the agent knows—for example, the K
is false in any model in which [1,2] contains a pit, because there is no breeze in [1,1]. The
are in fact just three models in which the KB is true, and these are shown as a subset of
models in Figure 7.5. Now let us consider two possible conclusions:

ER]

a1 = “There is no pit in [1,2]
ag = “There is no pitin [2,2].”
We have marked the models of o and a9 in Figures 7.5(a) and 7.5(b) respectively. %
inspection, we see the following:

in every model in which KB is true, o is also true.
Hence, KB = «;: there is no pit in [1,2]. We can also see that

in some models in which KB is true, « is false.
Hence, KB B~ a: the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclt
that there is a pit in [2,2].)*

The preceding example not only illustrates entailment, but also shows how the defi
tion of entailment can be applied to derive conclusions—that is, to carry out logical inf

ence. The inference algorithm illustrated in Figure 7.5 is called model checking, becaus
enumerates all possible models to check that « is true in all models in which KB is true.

3 Although the figure shows the models as partial wumpus worlds, they are really nothing more than assig
of true and false to the sentences “there is a pit in [1,2]” etc. Models, in the mathematical sense. do nc
have orrible "airy wumpuses in them.

4 The agent can calculate the probability that there is a pit in [2,2]; Chapter 13 shows how.

w8 -On;

208

Chapter 7. Logical Agen

A simple knowledge base

Now that we have defined the semantics for propositional logic, we can construct a knowledg
base for the wumpus world. For simplicity, we will deal only with pits; the wumpus itse!
is left as an exercise. We will provide enough knowledge to carry out the inference that wa
done informally in Section 7.3.

First, we need to choose our vocabulary of proposition symbols. For each ¢, j:

e Let P, ; be true if there is a pit in [4, j].
e Let B, ; be true if there is a breeze in [4, j].
The knowledge base includes the following sentences, each one labeled for convenience:
e There is no pitin [1,1]:
Ri: =P

e A square is breezy if and only if there is a pit in a neighboring square. This has to =
stated for each square; for now, we include just the relevant squares:

Ry : Bl,l = (Pl’g V PQJ) s
R3 : Bgﬁl = (Pl,l V P272 vV P371) .

e The preceding sentences are true in all wumpus worlds. Now we include the bree
percepts for the first two squares visited in the specific world the agent is in, leading
to the situation in Figure 7.3(b).

R4 . ﬂBl,l .
Rs: Baj.

The knowledge base, then, consists of sentences /27 through Rs. It can also be considerec =
a single sentence—the conjunction R A Ry A R3 A R4 /\ Rs—Dbecause it asserts that all 1
individual sentences are true.

Inference

Recall that the aim of logical inference is to decide whether KB |= « for some sentence
For example, is P entailed? Our first algorithm for inference will be a direct implemen®
tion of the definition of entailment: enumerate the models, and check that « is true in eves
model in which KB is true. For propositional logic, models are assignments of ¢rue or fa
to every proposition symbol. Returning to our wumpus-world example, the relevant propes
tion symbols are B171, BQ,la P1,1, PLQ, P271, P272, and P371. With seven symbols, there =
27 =128 possible models; in three of these, KB is true (Figure 7.9). In those three mods
— P 5 is true, hence there is no pit in [1,2]. On the other hand, P 5 is true in two of the ths
models and false in one, so we cannot yet tell whether there is a pit in [2,2].

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.3
general algorithm for deciding entailment in propositional logic is shown in Figure 7.10. L
the BACKTRACKING-SEARCH algorithm on page 76, TT-ENTAILS? performs a recur
enumeration of a finite space of assignments to variables. The algorithm is sound, becaus

ogical A

ot a knowle
wumpus
rence thats

h, g

nvenience:

. This has t@

lude the breg
is in, leading

e consideres
serts that all

ome sentence
ect impleme
¢ 18 true in €
of true or J
elevant prog ‘
mbols, there &
se three mods
two of the €

in Figure 750
ligure 7 10. 1
Orms @ ecurss:
ound, becaus:

Propositional Logic: A Very Simple Logic

209

Bii1| Bax| Pii| Pia| Pop | P2 | Pan Ry Rs R3 Ry Rs KB
false | false | false | false | false | false | false || true | true | true | true false || false
false | false | false | false | false | false | true || true | true | false | true false || false
false | true | false | false | false | false | false || true | true false | true | true || false
false | true | false | false | false | false | true || true | true | true | true | true | frue
false | true | false | false | false | true | false || true | true | true | true | true || true
false | true | false | false | false | true | true | true | true | true | true | true || true
false | true | false | false | true | false | false || true | false false | true | true || false
true | true | true | true | true | true | true || false | true | true | false | true || false

Figure 7.9

A truth table constructed for the knowledge base given in the text. KB is true

if R, through Rj are true, which occurs in just 3 of the 128 rows. In all 3 rows, P » is false,
so there is no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(KB, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

symbols « a list of the proposition symbols in KB and «
return TT-CHECK-ALL(K B, o, symbols, [])

function TT-CHECK-ALL(KB, v, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(K B, model) then return PL-TRUE?(«, model)
else return true
else do
P «— FIRST(symbols); rest < REST(symbols)
return TT-CHECK-ALL(KB, o, rest, EXTEND(P, true, model)) and
TT-CHECK-ALL(KB, o, rest, EXTEND(P, false, model))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment.
TT stands for truth table. PL-TRUE? returns true if a sentence holds within a model. The
variable model represents a partial model—an assignment to only some of the variables. The
function call EXTEND(P, true, model) returns a new partial model in which P has the value
true.

implements directly the definition of entailment, and complete, because it works for any KB
and o and always terminates—there are only finitely many models to examine.
Of course, “finitely many” is not always the same as “few.” If KB and « contain 72 sym-
bols in all, then there are 2” models. Thus, the time complexity of the algorithm is O(2").
(The space complexity is only O(n) because the enumeration is depth-first.) Later in this

