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Abstract

We compute useful upper and lower bounds on the expected maximum
of up to a few hundred correlated Normal variables with arbitrary means
and variances. Two types of bounding processes are used: perfectly de-
pendent Normal variables, and independent Normal variables, both with
arbitrary mean values. The expected maximum for the perfectly depen-
dent variables can be evaluated in closed form; for the independent vari-
ables, a single numerical integration is required. Higher moments are also
available. We use mathematical programming to find parameters for the
processes, so they will give bounds on the expected maximum, rather
than approximations of unknown accuracy. Our original application is
to the maximum number of people on-line simultaneously during the day
in an infinite-server queue with a time-varying arrival rate. The upper
and lower bounds are tighter than previous bounds, and in many of our
examples are within 5 percent of each other.

Subject Classifications: Probability: bounds. Queues: Nonstationary.

1 Introduction

There are many cases where one wants an idea of the maximum load on a system
over a period of time. Applications occur in structural engineering to withstand
wind, wave, flood, or earthquake forces. Similar problems occur in surge sup-
pression for electronic systems, and in designing power grids that should be able
to handle the peak load. Maximum values are also important in applications
other than load-determination. For example, critical paths in project schedul-
ing can depend on how long the longest sequence of jobs takes until it is done.
Circuit designs depend on how long it takes signals to propagate through a net-
work of gates. Similarly, the lifetime of a system in reliability theory is related
to the maximum of certain sums of component lifetimes. Also, factory capacity
decisions depend on the maximum expected demand for a portfolio of products,

*Working Paper number 03W-004, Industrial and Systems Engineering, Lehigh University,
Bethlehem, PA, USA. amr5@lehigh.edu, www.lehigh.edu/~amr5/



as do some inventory decisions. Our application comes from the Internet-access
industry, where a company’s bill is based in part on the maximum number of
their customers that were on-line simultaneously during the day. In this ap-
plication, we have (for example) 144 correlated Normal variables, each with a
different mean and variance.

Extreme Value theory typically deals with order statistics (such as the max-
imum) as the size of the collection grows to infinity, and gives little indication of
how many variables are needed before the limiting distribution of the maximum
is a good approximation. It also typically assumes that the variables are IID
(Independent and Identically Distributed), or that they form a stationary pro-
cess. However, in many applications, the size of the collection is not very large,
and the variables are what might be called DDD (Dependent and Differently
Distributed). That is, the mean and variance might vary from one variable to
another (often, changing with time).

In this paper, we focus on the expected value of the maximum, rather than on
other moments or the whole distribution. This is because our original industrial
problem was solely oriented toward the expected maximum, without any risk-
aversion or other similar properties. After the literature survey in Section
we discuss in Section [3] the expected maximum of Perfectly Dependent and
Differently Distributed (PDDD) Normal variables. Section [4] then treats the
IDD (Independent and Differently Distributed) case. From there, Section
calculates upper and lower bounds on the DDD case for multivariate Normals.
It uses an inequality due to Vitale (2000) for the form of the bounds, and uses
mathematical programming to get the required data based on the covariance
matrix. Section [f] then demonstrates the technique as applied to the expected
maximum number of people in an M;/G /oo queueing system at any time point.

We will use the relative distance between the upper and lower bounds as a
measure of quality, but we realize that this is not an ideal measure in all cases.
This is because it can be made arbitrarily small or large by adding a constant to
all of the Normal variables, shifting them toward or away from zero. However,
it is the natural measurement for our application. We note that our bounds do
not work well for some applications. In particular, the expected maximum of
finitely-sampled standard Brownian motion is difficult for our bounds to handle.

In many cases, the expected maximum can be computed fairly well using
a simple simulation procedure. However, our technique using bounds can be
useful when optimizing a system where the objective function value depends
on the expected maximum. In our Internet-service application, we had the
opportunity to shape the arrival rate, and wanted to find the optimal shape.
Bounds like those presented below do not introduce stochastic noise into the
objective function as simulation would do. This makes it easier to compute
gradients.

Throughout this paper, we will use an overbar to indicate that a random
variable or process has zero mean (such as X;), and a tilde to indicate that
it has possibly non-zero mean (such as XZ) The mnemonic is that one has a
“flat-line” mean function, while the other varies up and down, according to the
time-of-day. We will use m; for the mean of X;, and always let X; = X; —m;.



Both variables will have variance agﬁ, and covariances ox;;.

2 Previous Literature

Jensen’s inequality gives us our first bound, since the “max” function is convex.
This gives us an easily obtained but not very tight lower bound on the expected
maximum:
E [maxf(i] > max E {Xl} = maxm;
3 K3 K3

Tippett (1925) gives tables for the expected value and variance of the max-
imum of IID Normals for n = 2,5, 10, 20, 60, 100, 200, 500, 1000. He also gives
tables for the CDF of the maximum. Most of the paper is concerned with the
distribution of the range, though. Teichroew (1956) gives more detailed tables
for n = 2...20 for all Normal order statistics, along with their products. Again,
this is for the IID case only. Clark and Williams (1958) consider the distribution
of the order statistics for IID variables, but start by assuming that the CDF
inverse is a polynomial. Thus, their method in this form is invalid for Normals.
However, they extend it to require only differentiability. Bose and Gupta (1959)
also consider the IID Normal case.

Owen and Steck (1962) considers the DID (Dependent but Identically Dis-
tributed) case, with standard Normals and all equal correlations. This is done
by starting with n+ 1 IID Normals, and transforming them to n DID variables.
They then consider multinomial distributions with equal cell probabilities.

Clark (1961) gives exact formulas for the first four moments of the maximum
of two Normals in the DDD case. We summarize the formula for the expected
maximum here: first, define

a=1\/0% + 0% — 20x12 (1)
and
a=(my —m2)/a (2)
Then o
E [max(Xl, Xz)} =my - B(a) + ms - B(—a) +a - d(a) (3)

where ¢ and ® are the Standard Normal density and cumulative distribution
functions. He also provides a recursive approximation of the moments of the
maximum for three, four, or more Normals, and shows some evidence that the
approximation is fairly accurate. The approximation is to treat two of the vari-
ables first, and suppose that their maximum also has a Normal distribution,
then combine that Normal with the third, etc. We will return to this approx-
imation in Section He points out that the completion time of a PERT
network (Malcolm et al., 1959) can be represented as the maximum of all paths
from start to finish, but that there are often too many paths to consider all of
them explicitly. He then develops an approximation method not unlike Dijk-
stra’s algorithm, where the time that each node occurs is updated based on its



predecessors. Kella (1986) gives the Laplace transform of the maximum for the
DDD case with two Normal variables, and from it derives the first two moments
in formulas that are equivalent to those from Clark.

David (1981) is a standard reference for order statistics, but does not include
much on calculations for DDD variables. Leadbetter, Lindgren, and Rootzen
(1983) has examples of the maximum of nonstationary processes, such as air
pollution levels during the year (which increased during the winter, for the data
set in question). Also considered is the maximum of a mixture of distributions,
where the mixture is due to normal weather versus hurricanes. Coles (2001)
considers several sets of nonstationary data, and explores when the stationarity
or lack thereof becomes important. Unfortunately, a statistical approach to
existing data sets will not help us answer “what-if” questions when designing
systems.

Ross (2003) provides two results of interest. The first is an upper bound on

E {max Xz} in the DDD case, without requiring the variables to have Normal

distributions. First, we have the bound, for all values of c,

E[mzaxjﬁv] §c+i/mPr{)~Q>x}dz (4)
i=1"¢

The optimal value of ¢ (the one which produces the smallest upper bound using
this system) is the ¢ which satisfies

N
;Pr{Xi>c}:1 (5)

Finding this optimal value of ¢ requires a numerical rootfinding procedure. Note
that these formulas do not include any covariance between random variables—
they are valid for any covariances, but treat the variables independently. Once
the value of ¢ is determined, the bound may be evaluated by performing the
integration. This bound was also discussed by Lai and Robinson (1976), but
only in the DID case. We will refer to this bound as the LRR bound. In
Appendix [A] we specialize it to the Normal distribution, which allows us to
avoid numerical integration.

Ross also provides a formula for the distribution of the maximum of standard
Brownian motion on the interval [0, T]. The formula is equivalent to saying that
the maximum has a Half-Normal distribution. This is one of the few closed-form
results available for more than 20 or so correlated Normal random variables, but
it goes to the other extreme of an uncountable set of Normals. It is also difficult
to generalize the derivation to non-stationary Brownian motion.

Slepian (1962) introduced an inequality that has become a standard theorem
in this field. It allows us to compare two zero-mean Gaussian processes and
establish stochastic dominance of one maximum over the other. However, it
requires that the variances stay the same from one process to the next. Adler
(2003), on page 75, mentions that the Sudakov-Fernique inequality relaxes the



equal-variances condition of Slepian’s inequality, but then loses the stochastic
dominance condition. At that point, it can only guarantee that the expected
values of the maxima are ordered. Still, it applies only to zero-mean variables.

Our main method for establishing upper and lower bounds on our DDD
variables X; involves a theorem from Vitale (2000), which we state here in a
slightly modified version. Let W;, X;, and Y;, for i = 1... N, be zero-mean
DDD Normal random variables such that, for all i, j,

E[(W; - W))’] <E[(Xi - X;)’] <E[(Y; - Y))?] (6)
Then for arbitrary constants m;,
E [mlax W, + ml} <E [mlax X+ ml} <E {mzaxl_fi + mz} (7)
We have chosen to also use m; as the mean of Xl-, so that we can write
B o] <5 e 5] < 5 e »

It is not too difficult to use simulation to estimate the expected value of the
maximum. The multivariate Normal is simulated by using a vector of indepen-
dent standard Normal values, and multiplying by the Cholesky decomposition of
the covariance matrix, then adding the vector of means. This technique is sum-
marized in Chapter 8.1.4 of Tong (1990) and was used in Ross (2001). However,
as mentioned above, using simulation introduces noise into the results, which
can make optimization more difficult.

A variety of papers have appeared that consider maximum values for queue-
ing systems. Their techniques usually are particular to queueing systems, rather
than applying to a wide class of processes (DDD Normal processes). Further-
more, they are typically confined to queueing systems with constant arrival
rates, rather than allowing rates to vary with the time of day.

In the next two sections, we compute the expected maximum for two special
covariance structures.

3 The Perfectly Dependent Case

It is the arbitrary structure of the covariance matrix that makes the expected
maximum hard to compute. By imposing more structure on the covariances, we
can obtain a process whose expected maximum is more amenable to computa-
tion. Our first simplification is the case when all the components of the process
are perfectly correlated. That is, the correlations coefficients can only be +1
or —1. In the situation with identical distributions, perfect correlation makes

all but the first variable redundant, so E {max XZ] =mq =...=my. When

the distributions are not the same, the situation is more complicated, but still
relatively friendly.



Let V; be a set of DDD Normal variables, with all components being perfectly
correlated. We call this the Perfectly-DDD, or PDDD, case. We may construct
such a set by starting with a single standard Normal Z, and defining

Vi=si-Z+m;

where s; may be any real number. This allows some correlations to be +1, while
others are —1. We can then compute the expected maximum by conditioning

on Z, then unconditioning. Note that E [max Vi|Z = z] is a deterministic (and

easily computed) function; we will call it h(z). It is a convex, piecewise-linear
function with at most one segment for each V; variable. In our application,
below, it tends to have only a few segments, instead of one for each variable.
If all the s; are positive, h(z) is increasing, and it is decreasing if all s; are
negative. In any case, the expected maximum is

oo
E [maxv;] —E [E [maxw |Z” :/ h(2)é(2)dz
—o0
To compute the integral, we break it up into segments based on the breakpoints
in h(z). Let 21, 29,... be the breakpoints in increasing order, and suppose that
variable V7 is responsible for the value of h(z) between z3 and z3. The integral
for that portion is then

z3
/ (s7- 2z +m7)p(2)dz 9)
z2
The first breakpoint is —oo, and the last is +00. These integrals can be com-
puted without numerical integration, using a technique similar to the one used
in Appendix [A] Thus, we have a rapid way to compute the expected maximum
exactly in the PDDD case.

Before we go on, we will mention some interesting properties of the PDDD
case. First, using (—1) 5§ will give the same results as §, because the distribution
of Z is symmetric around zero. Next, the expected value doesn’t change if we
add a constant to each value of s;. That is, if 1 is a vector of ones, using §+0- 1
gives the same expected maximum as using just s, for any real §, positive or
negative. We can see this as follows:

E max((si—i—é)Z—«—mi)} =E [5Z+max(si~Z+mi)] =

SE[Z]+E {mzax(si “Z+ mz):| =E {m;chVi}

The last equality is because E[Z] = 0. In contrast to the mean, the variance
of the maximum changes with § according to a convex quadratic function. The
variance of the maximum is computed almost as easily as the expected value.
Also, the gradient of the expected value with respect to §is not hard to compute
analytically (see Appendix , eliminating the need for finite-differences. We
have found empirically that E [max] is convex as a function of §.



Next, we discuss a second way to restrict the covariance structure that makes
the expected maximum computable. The random variables will be independent,
but might have different distributions (the IDD case).

4 The Independent, Different Distributions Case

Suppose that we have a collection of independent random variables W; for
it = 1...N; they may have different means and variances. The cumulative
distribution function (CDF) of their maximum value is

Pr {m?XWi < w} = ﬁPr {WL < w} (10)
i=1

We could obtain the density by taking the derivative, using the product rule.
However, we end up with a sum of products that takes roughly N times longer
to evaluate than the CDF. Instead, we will use the CDF directly. It is well
known that for any non-negative random variable R, the mean value of R may
be computed using

E[R]/OooPr{R>r}dr (11)

A somewhat less common formula from David (1981), among other places, ex-
tends this to the case where the variable may take any value, positive or negative

E[X]= /OOO(Pr {X >z} —Pr{X < —z})dz (12)

Combining Eqn. [I0] with Eqn. we get

/00 <l—ﬁPr{Wi§w}—ﬁPr{Wi<—w}> dw (13)

Performing numerical integration gives us a relatively easy way to compute the
expected maximum in the IDD case. Even though the integral has an infinite
domain, the integrand approaches 0 very rapidly after a while, so not much
is lost by stopping the integration then. In particular, we stopped integrating
when the integrand underflowed using floating point arithmetic. That is, when
the product terms come within roughly 10716 of 1, then 1 —]] evaluates to zero.

This formulation can easily accommodate some of the variables having a
fixed value (a variance of zero). Such distributions can easily arise in appli-
cations, and in the bounding technique we will discuss below. Suppose that
variable 10 has the largest mean of all the zero-variance distributions, and that
mig > 0. Then, we may start the numerical integration from m;y instead of

from 0, because on the interval [0,m19) we will have Pr {Ww < w} =0 =

Pr {Wm < —w}. Thus, on that interval, the integrand is exactly 1, which does



not require numerical integration. Furthermore, the [[ Pr {WZ < —w} term will

be zero, and so may be left out. If the largest zero-variance distribution has a
negative mean, the computation is still simplified somewhat, but not as much.
In the IDD case, we can compute higher moments using a formula similar

to Eqn.
E[X"] = /000 ne™ ' (Pr{X >z} + (-1)"Pr{X < —2})dz (14)

Since we are already evaluating the two CDF values just to get the expected
value, computing this integral comes without much extra effort.

Having examined the expected value of the maximum in both the PDDD and
IDD cases, we next turn to the DDD case with arbitrary covariance structures,
and compute bounds on the expected maximum.

5 Bounds for the Correlated Case

Now that we have ways to calculate the expected maximum in the PDDD and
IDD cases, we will compute bounds in the Normal DDD case by using the
theorem from Vitale, in Eqns. |§| and m Note that, since the X; have a mean of
zZero,
E[(X; - Xj)z] =o%; + cr%(j —20x4j = by (15)

Furthermore, this quantity is always non-negative, since it is the expectation of
a squared quantity.

To compute a value for our lower bounds, we need to specify the variances
and covariances of W; so that:

1. we can actually compute E [maxi W}, and
2. Eqn. [0 is satisfied, and
3. E {maxi WZ} is as large as we can reasonably make it.

The upper bound is similar, except we want to minimize rather than maximize.
To be able to compute the expected maximum, we will first restrict ourselves to
the PDDD case, in Section Then, we will use the IDD case in Section |5.2

5.1 Using PDDD Variables

To use PDDD variables to establish bounds on the expected maximum, we will
keep the same mean values m; for each variable. We must decide on the s; values
such that the conditions of Vitale’s theorem are satisfied. The mathematical
program for the lower bound is

(maximize E [maxi ‘71} )
s.t. VZ,] : (31 — 8j)2 < bij (16)
Vi s; is unrestricted in sign



where b;; comes from Eqn. Our objective function is shown in parentheses
because finding an optimal solution is not vital: any feasible solution establishes
a bound. The inequalities for an upper bound are similar:

(minimize E |max; Y; )
s.t. VL] : (Sz — Sj)Q > bij (17)
Vi : s; is unrestricted in sign

Here, we are using Y; as the PDDD variables for the upper bound; hopefully
this will not cause confusion with the IDD case, below.

These two programs have nonlinear (quadratic) constraints. For the lower
bound, we can convert (s; —s;)? < b;; into two simultaneous linear inequalities:

(Si — Sj) < bij and — (Sz — Sj) < bij

However, the feasible region for the upper bound program is not convex, so when
we linearize the constraints we end up with a disjunctive condition: (s; —s;)? >
bi; becomes

(si —85) > \/bij or — (8i — 85) > \/bij

This makes the problem much harder to solve for the upper bound than it is
for the lower bound. However, we can at least find a starting feasible solution
of the form s; = i - maxv/b, though this is probably gives results far from
the true expected value. Another initial feasible solution is s; = 0 and s; =
max;—1...j—1(5; + 1/bi;). Either of these may be done with any ordering to the
variables.

Because any feasible solution to the constraints gives a bound, it is not
necessarily important to truly minimize or maximize the nonlinear objective
function. We suggest starting with a linear objective function, whose weights
are chosen heuristically. In the PDDD case, large expected maxima are obtained
when two variables with large means have a large difference in their s; values.
For example, if s4 is large and positive, and sz is large and negative, then
regardless of the value of Z, at least one of the variables V;, V5 will be large and
positive. From this reasoning, two obvious weight functions are [—1,+1,—1,.. ]
and [0,0,...,0,+1,—1,0,...,0], where the two nonzero components are near the
maximum value of m;. In some of our experiments, these two objective functions
gave different values of &, but the same h(z) function and therefore the same
final value of E [max]|. In other experiments, the resulting h(z) functions were
only slightly different, and gave the same bounds to within 5 digits. When we
used the true non-linear objective function on small problems, no change in the
final value of E [max] was obtained.

It is interesting to note that if § is a feasible solution to either of these
programs (upper or lower bound), then §+ ¢ - T is also a feasible solution.
Fortunately, as noted above, the objective function value is the same. The
extra degree of freedom makes the feasible region unbounded in a way that can



confuse some optimization routines. To remove the problem, one may add a
constraint like s; =0 or }_ s; = 0, since any feasible vector § may be converted
to one of these standardized forms.

5.2 Using IDD Variables

We next present another way to obtain bounds on the DDD case, using IDD
variables. Again, the mean values m; are already determined, and we must
decide on the variances such that the conditions of Vitale’s theorem are satisfied.
The covariances will be zero. To satisfy Eqn.[6] we need to find a feasible solution
to the set of inequalities

(maximize E {maxi WZ})
s.t. Vi, g : O’%Vi + U%/Vj < byj (18)
Vi : O’%Vi >0

where b;; comes from Eqn. Again, our objective function is shown in paren-
theses because finding an optimal solution is not vital: any feasible solution
establishes a bound. The inequalities for an upper bound are similar:

(minimize E {maxi YZ})
s.t. Vi,j: 0%+ O'%/j > b;j (19)
Vi : 0%, >0

These problems have trivial feasible solutions (03,; = 0 and o3, = maxb), so

our bounds always exist. Other simple solutions, better than the trivial ones,
are 03,; = 0.5minb and 0%, = 0.5maxb. If all of the original covariances are
non-negative, then we can get an upper bound without solving the program by
simply ignoring the covariances, and letting 0%, = 0%;. A similar idea works
for the lower bound if the original covariances are all non-positive. These simple
bounds might not be near optimal, though.

We have the choice of using the standard deviations or the variances as our
decision variables. If we use the standard deviations, we find that the objective
function is empirically convex, but the constraints are nonlinear. In the lower-
bound case, the feasible region is still convex, but not in the upper-bound case.
If we use the variances, the objective function is not convex, but the constraints
are linear, and the feasible region is convex for both the lower and upper bound
problems. We have chosen to use the variances, because linear inequalities
and a convex feasible region are much easier to deal with than the nonlinear
constraints. Furthermore, the non-convexity of the objective is not as serious as
it first appears. If we suppose that it is convex when using standard deviations,
then its maxima occur at extreme points of the feasible region. If we then
change to using variances, we see that the maxima will still be on the boundary,
though possibly not at an extreme point. Similarly, any local minimum will be
a global minimum when trying to find the smallest upper bound, whether we
use the standard deviations or the variances.

10



Whether we use the standard deviations or variances as our decision vari-
able, it takes IV integrations to compute the gradient, whether done by taking
the derivative symbolically, or by finite differences. Again, because any feasible
solution gives us a bound, we suggest starting by using a linear objective func-
tion. If the bounds it gives are not satisfactory, then further effort can be put
into solving the NLP, perhaps using the LP solution as a starting point. The
program has one constraint for each pair of variables, which leads to a constraint
matrix that is tall and thin, rather than short and wide. Thus, we have seen
much faster solution times when solving the dual rather than the primal.

In using a linear program to find the bounds, we must choose an objective
function. A few heuristics suggest themselves:

1. Emphasize just one variance
2. Emphasize the two or three variables with the highest means
3. Weight all variables using some function of their means

We have found that the final values of the bounds are not very different in our
examples. For that reason, we have used the simple objective of equal weight
on all variables.

We note briefly that our upper and lower bounds are equal in the 2-variable
case, and therefore give the same answer that Eqn. [3] gives. This is because we
may let ofy,; = 0% + 0%, — 0x12 and o3, = 0 to get the same value of a (in
Eqn as the X7, X5 variables give.

6 A Queueing Demonstration

In some sectors of the dial-up Internet access industry, one company will rent its
modem banks to another company. The bill is based on the maximum number
of simultaneous sessions seen in the system during the day. We will assume that
the system has plenty of capacity, so that we can treat it as an M;/G /oo system.
This can be justified for modem banks that were built during the peak of the
economic boom, but whose traffic has not risen to meet expectations. It is not
uncommon to leave such a facility as it is, rather than canceling the phone lines,
to avoid the trouble of rebuilding it later. Ross (2001) explored the optimal way
to split the traffic between a company that uses this peak-based billing and one
that bills on an hourly basis. Here, we use our upper and lower bounds on the
expected maximum to get a good estimate of the expected peak of the day.
We ignore the usual variation in average service durations throughout the day,
though it is not difficult to include.

We will start by assuming that we know the arrival rate function, A(t), of
a non-homogeneous Poisson process. Let Q(t) be the number in the system at
time t; it has a Poisson distribution with mean

my(t) = /t AMu)GC (t — u)du (20)

— 00
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where G (x) = Pr{S > z} is the tail probability of the call duration distribu-
tion. For more information on this model, see Palm (1988), and Eick, Massey,
and Whitt (1993ab). We use a subscript A to denote the arrival rate that gives
this particular mean. The covariance between time points is (adapted from
Ross, 2003)

Cov (Q(t), Q(t + ) = [ Mu) - GOt + 6 —u)du

If we let § = 0 we get Var (Q(t)). Since the number in the system at any time
point is Poisson, the variance is equal to the mean: Var (Q(t)) = mx(t).

In the modem systems that we have dealt with, the average number of people
on-line is typically large (300 or more), enough that a Normal approximation
to the Poisson distribution is easily justified. This is what allows us to use the
methods of Sections [ and[f] At the points of very low usage around midnight,
the Normal approximation might be more difficult to justify, but it is practically
impossible for those time points to make a contribution to the maximum value,
so we will ignore the goodness-of-fit issue.

While this describes the process in continuous time, it is difficult to analyze
such a non-stationary process. Instead, we will sample the system at 10-minute
intervals, and take the maximum. This actually matches the way it is done in
industry. So, our problem is to find

E [max Q(00:00), Q(00:10), . .., Q(23:50)]

where our 144 samples have time-varying means and variances, and positive
covariances. We will also also explore the effects of changing the 10-minute
sample interval. Treating the Q(t) variables as X;, we want to find upper and
lower bounds using the mathematical programming of Section

Figure |1| shows the mean number in system mj(¢) for one particular sinu-
soidal arrival rate function, along with plus and minus two standard deviations
(dotted curves), and a random sample. It also shows, off to the side, the value
of E[max], along with errorbars that indicate +2,/Var (max), computed via
simulation.

In Figure we show the standard deviations of the original X variables and
the IDD W; variables. The latter are from solving an LP with equal weights,
though we show standard deviations instead of variances because the units are
easier to interpret. The zigzags in the lower bound variables are common in our
other examples, below. We have not graphed the upper-bound results, because
they are practically indistinguishable from the original process—in particular, no
zigzagging is seen.

Next, we generalize this arrival rate by allowing the height of the peak to
vary, and explore changes to a few different system parameters.

6.1 A Class of Arrival Rate Functions

To investigate the behavior of the bounds in a more general situation, we will
consider a class of sinusoidal arrival rate functions, similar to those used by

12
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Figure 1: Mean, plus and minus two standard deviations, and a sample path

B -
20t 1
@
£
T
c
o
o 151
Qo
S
>
c
G
S 1or
Qe
[a}
e
n
5
- Original process
— LB process

0 4 8 12 16 20 24
time of day

Figure 2: Standard deviations from the original and lower-bound processes
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Green and Kolesar (1991):
At) = A- (1 — RA - cos(2nt/24))

where \ is the average arrival rate over the whole day, RA is the relative ampli-
tude (between 0 and 1), and time ¢ is measured in hours. We will consider the
effects of three types of changes: the relative amplitude, the number of samples
per day, and the service rate. The first relates to the scale of the process and
what proportion of sample points are important in determining the maximum
value (for higher relative amplitudes, fewer samples are near the maximum).
The other two relate more to the dependence between sample points.

Our center case (illustrated in Fig. [1]) is A = 1024 calls per hour, Exponential
call durations with an average of 20 minutes per call (¢ = 3 calls per hour), and
one sample every 10 minutes (144 per day). The relative amplitude is 0.8 unless
otherwise stated. We have chosen Exponential durations not because we rely
on any memoryless properties, but simply out of tradition. Other distributions
(including heavy-tailed) would work just as well.

In Figure [3] we let the relative amplitude vary from 0 to 1 and plot the
responses of our bounds and estimates. In the center is a line determined by
simulation of the Gaussian process. No errorbars are shown on the data points
from the simulation because they are small enough to be irrelevant. On either
side are the bounds found using IDD variables and a linear objective function,
putting equal weight on all variances. This gives us values for J%Vi and o2,

which are then used to calculate E {max Wz} and E [max )71} using the methods

of Section [} Immediately below the IDD lower bound is the PDDD lower
bound. The lowest curve is from Jensen’s inequality, and the uppermost curve
is the LRR bound from Eqns [4| and [5| We see that the increase in the expected
maximum is roughly linear for medium-large values of RA, where the peak
arrival rate affects the expected maximum directly. However, for small values of
RA, the expected maximum is not linear in RA. This is because the arrival rate
peak is, heuristically speaking, washed out by the noise inherent in the system,
and increasing RA a little bit does not increase the expected maximum much
above the noise. A similar effect was seen in Ross (2001). The distance between
the upper and lower bounds from the LP stays nearly unchanged as the relative
amplitude increases. The relative distance decreases from 4.5 to 2.5 percent.
For relative amplitudes very near 1, the number of people on-line at the lowest
point might be so small that the Normal is no longer a valid approximation for
the Poisson. However, these times have a negligible impact on the distribution
of the maximum, so the approximation quality is not at all important. In fact,
we could probably ignore any time point that was, say, 4 standard deviations
below the Jensen’s inequality lower bound, though we have not done so.
Conspicuously absent from Figure[3] and all subsequent figures, is any PDDD
upper bound. This is because of the difficulty of finding good solutions to the
mathematical program. The two feasible solutions given in Section [5.1| give
values of the expected maximum that are far in excess of the LRR bounds.
This held true even after considering various ways to order the variables. The
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orderings 1...144 and 144. .. 1 produced essentially equal bounds. The orderings
from largest to smallest mean (and vice versa) gave worse results (but equal to
each other). Random orderings gave the worst results.

In Figure 4] we go back to RA = 0.8 but change the number of samples
during the day. We might do this to get a better idea of the continuous-time
maximum by sampling more often, or to see how a proposed change in the
agreed-upon sampling interval would affect costs. As the samples become closer
together, their correlations rise, and this makes the lower bounds from the
LP not as tight. This is because the right-hand side values b;; (from Eqn.
decrease as the covariances increase. The errorbars shown are at plus and minus
2 standard errors from the mean. The relative distance between the upper and
lower bounds from the IDD processes is 0.01 percent for 60-minute samples, and
increases to 6.5 percent for 2-minute samples.

In Figure [f] we go back to 144 samples per day, but change the average
service duration. This is because different Internet service providers see different
customer behavior. Here, we have taken special care to keep the mean values
the same for different service durations. This is done by computing the damping
coefficient as in Eick, Massey, and Whitt (1993a), and increasing the relative
amplitude to compensate for the damping, so that the resulting mean-value
curve has a relative amplitude of 0.8 in all cases. As the service durations get
longer, the correlation between sample points goes up (people who were on-
line at 1:10pm are more likely to still be on-line at 1:20pm, so the samples are
less independent). Again, this affects the lower bounds from the mathematical
programs through the right-hand side values. For a mean service of 120 minutes,
the relative distance between the bounds is 4.9 percent, but it decreases to 0.48
percent when the mean service is 5 minutes.

Interestingly, the optimal solution for the upper bound LP is not very differ-
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ent than the original variances of the X;, and so the value of the upper bound
is practically the same as if we had chosen 0%, = 0%, (as we mentioned in
Section 5] since all covariances are positive) and not run the LP. However, we
will see a case (below) where they are substantially different.

We mentioned that, in the IDD case, we can calculate higher moments of
max W; and maxY; using Eqn. However, there is no reason that they will

be bounds on the higher moments of max X;. We found that, empirically,
Var (max Wi) < Var (max f’l) < Var (max )N(Z>

in every case for the situations from Figures[3}f] In some sense, this is surprising—
we might expect Y; to produce an upper bound on the variance rather than a
lower bound, because it gives an upper bound on the expected value. However,
since the variables Y; are IDD, where X; are DDD, we might expect that the
positive correlations of the X; would increase the variance of the maximum,
much as they would increase the variance if we were to take the sum.

6.2 Uncertainty in the Arrival Rate Function

In practical applications, we never know exactly what the non-homogeneous
Poisson arrival rate A(t) is going to be. It is affected by weather, breaking news,
and other unexpected events. The variation we see in arrival rates is much more
than predicted by a Poisson process. For example, if we forecast an arrival rate
of 100 calls for a particular hour next week, a Poisson model would say that we
should see 100 plus or minus 10 calls (one standard deviation). However, from
real data sets we see a standard deviation more on the scale of 20 or 30 calls.
For this reason, we will model the arrival rate itself as being uncertain. See
the monograph by Grandell (1997) for a general view of these types of models,
which are sometimes called Cox processes, after Cox (1955).

There are many ways to model the uncertainty, but we will consider a very
simple one. We will suppose that we know the shape of the arrival rate precisely,
but its scale is subject to some forecast error. That is, for a particular known
shape function £(t), the arrival rate is

A(t) = S - £(t)

where S is a random variable, and we have a prior distribution for it. We would
typically take E[S] = 1, but will leave it general for now. Let the prior CDF
be Fg(s). The multiplier is chosen once, just before the start of the day, rather
than continuously changing as the day goes on. There is some evidence for this
simple model being appropriate, as discussed in Thompson (1999), Henderson
and Chen (2000), and Brown et al. (2002).

To compute the mean and variance at each sample point, and the covariance
between sample points, we condition on the value of S and then uncondition:

mse(t) = E[E[m(t) S]] = /OOO/_ s £(u)GC (t — u)du dFs(s)
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Here, we have left the inner integral starting at —oo even though the previous
days have different values of S. This is not a problem as long as the average
service duration is no more than a few hours, and the peak is not near the start
of the day. Manipulating the integral further, we get

mge(t) = /OOO s[ ()G (t — u)du dFs(s) = /000 sm(t)dFs(s) =

(
mye(t) - /OOC sdFs(s) = my(t) -E[5]

which is not surprising. It could also be seen by noting that the M;/G /oo model
is a linear system, as mentioned by Eick, Massey, and Whitt (1993a).

Now, Q(t) is a mixture of Poisson distributions, instead of being a single
Poisson, so we cannot get the second moments of Q(¢) as easily as before. To get
the covariance between Q(t) and Q(t+9), we will use the conditional covariance
formula, which in general terms is

Cov (Y, Z) = E[Cov (Y, Z|X)] + Cov (E[Y |X],E[Z|X])
In our terms, we have Cov (Q(t), Q(t + 6)) =
E[Cov(Q(t), Q(t+0)[S)] + Cov(E[Q()|S]E[Q(t+6)|S]) =
E [/_;s () - GOu+8)du| + Cov(S-my(t),S -me(t+0)) =

E[S] /_ t 0t) -G (u+8)du + me(t) - me(t +6) - Var (S)

To get the variance at any particular time, we let § = 0 to get Var (Q(t)) =

E[9] /t 0(t) - GC(u)du + my(t)? - Var (S) = E [S]my(t) + me(t)? - Var (S)

— 00

Note that all of these formulas depend only on the first two moments of .S, rather
than the whole distribution. Thus, we do not need to decide exactly which type
of prior (Normal, Gamma, etc.) to use. However, we assume that the final
distribution of Q(t) is still well approximated by a Normal distribution. This
will be the case if the distribution has a strong central tendency (many Normals
and Gammas). A case where it would not hold true would be a widely spread
two-point discrete prior distribution that results in a bimodal final distribution
of Q(t). Another case would be an Exponential prior, which would give a
Geometric final distribution.

In Figure [6] we start with our central case for £(t), set E[S] = 1, and let
the coefficient of variation of the unknown scale S change from 0 to 30 percent.
We have also added a curve showing the upper bound that results from letting

0%, = 0%;, which we call “no covar” in the graph. This is the simple feasible
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Figure 6: Bound behavior as the forecast uncertainty changes

solution to the IDD mathematical program in the case when all covariances are
positive, suggested in Section In the case where the arrival rate function
was known exactly, this solution was similar to the solution of the LP for the
IDD variables, but now in the uncertain-scale case it is substantially different.
The relative distance between the upper and lower bounds from the LP in this
case is not as good as in the previous examples: it is roughly equal to the
coefficient of variation of the scale factor. That is, the bounds are within 4.5
percent of each other when the variation coefficient is 5 percent, and they are
within 29.89 percent of each other when the variation coefficient is 30 percent.
Nonetheless, they are still much closer together than the LRR bound and the
Jensen’s inequality bound.

Figure[7)is analogous to Figure[2} it shows the standard deviations from our
two bounding processes, along with those from the original process. Now, the
upper bound process is substantially different from the original. We still see the
zigzagging in the lower bound process, but again not in the upper bounds.

Figure [§] shows the optimal solutions for the PDDD lower bound, for two
different objective functions. The first uses the weights [—1,+1,—1,...], and
the second uses [0,0,...,0,+1,—1,0,...,0]. For the first weighting function,
the values of s; zig-zag, alternating small and large. For the second, the values
are essentially constant except for the two variables that had non-zero weights.
We have adjusted the values of §in each case so that the smallest is zero; in this
way, they may be thought of as standard deviations, and compared to Figure 7]
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6.3 Bound Quality and Pairwise Correlations

In Figures [@}{6] we changed the system parameters in a way that affected the
correlations between sample points. Now, we explore the effect of correlations
more directly. Instead of graphing against the changing system parameters,
as before, we will use the same data but look at the correlation between the
two adjacent samples at the peak time of day. This is neither the highest
nor the lowest correlation between adjacent points during the day—those occur
during the lulls in the arrival rate (in the evening and the morning, respectively).
Indeed, the correlation at peak is roughly the average of the entire day’s adjacent
correlations.

Figures use this correlation at peak as the horizontal axis, and are
analogous to Figures [@f] =~ We see that, as we anticipated from the earlier
figures, the bounds move farther apart as the correlation changes, but there is
little else that we can generalize.

6.4 Clark’s Approximation

As mentioned in the literature survey, Clark (1961) proposed an approximation
in the DDD case that uses the two-variable DDD results repeatedly. For exam-
ple, starting with the 144 variables in our central case, we would pick two of
them, create a new variable that is the maximum of the two, and assume that
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variable is normal. That is,

E |max Xi,... ;X142,X1437X144]
:E maxXl,...,X1427max(X143,X144)}
~E maXXl,...,X1427N1}

where Ni is a two-moment Normal approximation to max(X143,X144). The
mean is computed via Eqn. [3 for the variance, see Clark (1961). New correla-
tions are computed between N7 and the other variables, and the procedure is
repeated until two variables are left. The final expected value is then computed
via Eqn. 3

We have not seen in the literature a discussion of what order is best for the
reduction. Several options are:

1. From 1 to N,

2. From N to 1,

3. From minm; to max m;,

4. From max m; to minm,;, or
5. Random permutation.

One might also consider the variances along with the means when deciding the
order, but we have not done so.

To evaluate the effects of the ordering, we have tried each of the above
suggestions on some of our previous experiments. Figure shows the results
of the five orderings as we vary the average service rate (analogous to Figure [5)).
The 1...144 and 144...1 results are practically the same, and are closer to
the results of the simulation than the min ...max, max ...min, and random-
permutation results, which are themselves nearly indistinguishable.

However, we see different results for the various orderings in Figure [13]
which varies the coefficient of variation in the forecast uncertainty (analogous
to Figure@. The 1...144 and 144 ... 1 results are still very close. However, the
min ...max ordering seems very accurate compared to the simulation, while
the max ... min ordering is now worse, and the random ordering is the least
accurate.

In all but one case here, we see that as the random variables become more
correlated, the accuracy of the Clark approximation decreases.

7 Conclusions and Further Directions
We have demonstrated two ways to calculate lower bounds, and one way to com-

pute upper bounds, that give tighter bounds than previously available results.
While we have used surrogate objective functions, the results can only improve
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in the future by using the true non-linear objective function. Our results do not
require choosing an ordering for the random variables, as Clark’s approximation
does. While the IDD lower bound was always better than the PDDD bound,
there may be applications where the PDDD bound is superior. It does have the
advantages of a closed-form way to evaluate the objective function and gradient.

Out of curiosity, it would be nice to have a proof (or counterexample) about
the convexity of E[max] in the standard deviations (IDD case) or s; values
(PDDD case). However, it would probably not dramatically affect the usefulness
of the bounds. It would also be reassuring to have a more quantitative way to
express the apparent fact that the bound values do not vary much when we
change the weights in the LP.

It would also be nice to have an intuitive explanation of why, in the PDDD
case, the expected value of the maximum is insensitive to adding ¢ - I to the
value of §. The current proof uses only elementary methods, but does not add
probabilistic insight.

It might be possible to get better bounds with the currently IDD variables
by allowing some W; variables to be correlated. For example, we could make
the covariance between Wi and W, a decision variable, but have them be in-
dependent of all the other random variables. The same would apply for W3
and Wy, etc. Then, instead of computing the expected maximum of (say) 144
IDD Normals, we would compute the expected maximum of 72 IDD Bivariate-
Normals. This would require computing the CDFs for the bivariate Normals,
which is possible but not as easy as it is for univariate Normals.

A The LRR Bound in the Normal case

The LRR bound in Eqns. [d] and [f] is valid for any distribution, but requires
integration of the tail CDF function. Fortunately, for Normal random variables,
we can manipulate the integral to get an expression that does not involve in-

tegration (other than the Normal CDF). We write Pr {XZ > x} as an integral,

then reverse the order of integration of the resulting double integral. In the
Normal case, we can then re-write the formula using the CDF and PDF of each
variable.

First, we change the order of integration. Let f;(t) be the PDF for the
random variable X;. We have

/io Pr {X’Z > x}d:v = /jo tfi(t)dt — cPr {X’Z > c}

=c

This is true for Normal, Gamma, and many other common distributions.
Next, assuming a Normal distribution, we get (after integrating by parts)

U%(i'fi(c)+mi'Pr{Xi >C} —c-Pr{X}- >c} =
0% - fi(c) + (m; —c) - Pr {f(l > c}
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Using a Gamma distribution gives a similar formula. Overall, then, we have

E [miaxf(l} <c+ iv: (0% - file) + (m; —¢) - Pr {f(i > c})

B The Gradient in the PDDD Case

To optimize our bounds in the PDDD case, we need the gradient of the ex-
pected value E [max 171} with respect to the s; values. Recall that the expected

value in the PDDD case is a summation of integrals, each of the form in Eqn. [0
The breakpoints depend on the values of the s; variables. Suppose we want to
compute the partial derivative with respect to s7. If variable 7 does not deter-
mine a segment of the piecewise-linear function h(z), then the derivative is zero.
Suppose instead that variable 7 determines the segment between breakpoints zo
and z3. We must then compute
o z3(s7)
(s7-z+mq)p(2)dz

57)

0s7 /.

We have noted the dependence of zo and z3 on s7. We use Leibnitz’s rule for
derivatives involving the integrand and integration limits, and we get a partial
derivative of

f:((::)) 5%7(87 -z +mr)p(z)dz

—(s722 + m7)¢(2’2)3%722(57) (21)

+(s723 + m7)d(23) 52 23(57)

Here, if z5 appears alone, it is the current value. The integral component reduces

to s
/ z¢(2)dz

z2
which can be computed without numerical integration. We could compute the
value of the other two components, but they will end up being entirely cancelled.
This is because changing s7; will also affect the previous and the next integrals,
because their limits involve zo(s7) and z3(s7), respectively. When we apply
Leibnitz’s rule, we obtain terms that exactly cancel the last two terms in Eqn.
Overall, we have found

iE [max f/} B f;}j"“ 2¢(2)dz  if Vj determines segment
S; 0 0 if f/J does not determine a segment

There are two types of border cases that still result in the above value for the
gradient. The first is for the variables that define the leftmost and rightmost
segments of h(z) (the leftmost segment extends to —oo, the rightmost to +00).
The second case is if three line segments meet at a point. For example, con-
sider § = [—1,0,1] and m = [0,0,0]. Variable 1 defines the leftmost segment,
variable 3 the rightmost, and variable 2 does not appear in the piecewise-linear
representation of h(z).
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