
 1

Notes	on	C		
Version 0.0

 John H Remmers
 Dept. of Computer Science
 Eastern Michigan University
 (remmers@emunix.emich.edu)
 Copyright © 1994

These notes are intended for programmers who are experienced in a high-level structured language such as
Pascal and who need a basic reference and “quick start” for programming the C Language. They are not a
complete reference to the C language; however, it is hoped that a person who has mastered these notes can
learn additional features and fine points quickly as needed.

We use the ANSI version of C.

1.	Identifiers	

An identifier in C is a letter or underscore followed by any number of further letters, underscores, and
decimal digits. Identifiers are used to denote entities such as constants, variables, arrays, functions, and
macros.

In addition, C has a number of keywords consisting of lower-case letters but whose meaning is reserved by
the language and which may not be used as identifiers. The keywords in ANSI C are

auto break case char const
continue default do double else
entry enum extern float for
goto if int long register
return short signed sizeof static
struct switch typedef union unsigned
void volatile while

Upper and lower case are different in C. Thus, While and WHILE are valid but different identifiers, and
both are distinct from the reserved word while.

An identifier may be of any length. Some older C compilers may recognize only the first 8 characters as
significant, but modern compilers usually treat every character of very long identifiers (e.g. 64 characters or
longer) as significant.

Examples: The following are all valid identifiers.

fubaz xy13 TheLength theLength the_length

2.	Comments	

Comments in C are delimited by the character sequences /* and */. Comments may coexist on the same
line as code and may extend over any number of lines.

 2

Examples:

 /*
 * this is a
 * multi-line comment
 */

 i = 2 * i + 1; /* This is an end-of-line comment */

3.	Primitive	Data	Types	

C supports integer, real, and character data. Unlike many languages, it supports multiple flavors of each,
such as short and long integers, single- and double-precision reals, and signed and unsigned characters.

One creates simple variables of a primitive data type via a declaration list, consisting of a type specifier
followed by a comma-list of identifiers naming the variables being declared. The simplest type specifiers
are

 int “normal” integer. Typically 16 or 32 bits, depending on
 machine architecture, but not guaranteed to be either.

 char character. Normally 1 byte (8 bits). Left-most bit may or
 may not be interpreted ad a sign, depending on the compiler.

 float normal precision real. Typically about 7 or 8 significant
 decimal digits.

 double extended-precision real. Typically 15 or 16 significant decimal
 digits.

By prepending the modifiers long, short, unsigned, and signed, one specifies variations on these
types, as in

long int integers which might be longer (i.e. more bits) than a normal int.
Typical size is 32 bits. On machines with 32-bit architectures, often the
same as int.

 short int integers which might be shorter than a normal int.

Typical size is 16 bits.

 unsigned int integer in which every bit is treated as a data bit, rather
than one bit being reserved as a sign. An unsigned int can never test
as negative.

Meaningful combinations of modifiers are allowed, such as “long unsigned int”.

There are additional modifiers that affect the scope of a declared object or the way in which memory is
allocated for it. These will be discussed later.

A declaration consists of a type specifier followed by a comma-separated list of the objects being declared,
terminated by a semicolon. Examples of simple variable declarations:

 3

 int alpha, beta, gamma;
 double length_of_beam;
 unsigned short int mask1, mask2;
 char ch;

Depending on the placement of a declaration in a program, the identifiers may be local to a function or
block, or global to the entire program. Again, more on this later.

4.	Literals	

In addition to more-or-less standard notation for literal constants, one can indicate octal and hexadecimal
constants in C, as well as primitive data values of modified types.

Examples:

 1036 decimal integer one thousand three hundred and six
 01036 octal value 1(83) + 3(8) + 6 = 542 decimal (string of

digits preceded by 0 always represents octal)
 0x1036 hexadecimal value equivalent to 4150 decimal. (string of digits

 preceded by 0x or 0X always represents hexadecimal)
 1036L 1036 stored as a long int.
 ‘f’ character value f.
 136.45 float value with non-zero decimal part
 13.2e-3 equivalent to .0132. (e-3 is a scale factor)

Certain character literals are escape sequences representing commonly-occurring control characters. Each
escape sequence starts with the backslash character ‘\’. The most important are

 ‘\n’ newline
 ‘\t’ horizontal tab
 ‘\0’ null character
 ‘\b’ backspace
 ‘\a’ audible bell

String literals, represented by sequences of characters enclosed in double quotes, are a type of array and
will be considered after arrays have been discussed.

5.	Arrays	

As in many other languages, an array in C is a sequence of values, all of the same type, addressable by an
integer index or subscript. An array is created by specifying the component type and the size in a
declaration. Array subscripts always start with 0 and go up to one less than the declared size. Arrays are not
dynamic; the size must be a constant known at compile-time. (However, this restriction can be gotten
around by using dynamic memory allocation, discussed later.)

Examples of array declarations:

 int tb[20]; - array of 20 integers; first element tb[0], last tb[19]

 4

 char str[64]; - array of 64 characters
 double length[17628] - array of 17628 extended-precision reals

Array references are formed by following the array name by an integer expression in square brackets.

Multi-dimensional arrays are formed as follows:

 int tbl[20][50]; - array of 20 rows and 50 columns

and referenced similarly: tbl[i][j] is the element in the ith row and jth column of tb.

6.	Strings	

A string literal is a sequence of characters enclosed in double quotes:

 “Hello”
 “This is a test.”
 “F”
 “This is a string\ncontaining three\nlines of text.”

The string “F” is not the same as the character literal ‘F’. A common mistake in C programming is to use
one when the other is appropriate.

Escape sequences such as \n have the same significance in string literals as in character literals.

the literal “” denotes the empty string.

To embed the double quote character itself in a string, precede it by a backslash:

 “She said \”Hello\”.”

At runtime, the characters of a string are stored in consecutive bytes of memory, terminated by a null
character. Thus the string “Hello” occupies 6 bytes of memory, not 5. In fact, a string is just a constant
character array, and individual characters can be referenced by subscript notation:

 “Hello”[0] = ‘H’
 “Hello”[4] = ‘o’
 “Hello”[5] = ‘\0’

The opening and closing quotes of a string literal must be on the same line.

In ANSI C, string literals may be concatenated to form a single null terminated string; the literals are
separated by “white space” (blanks, tabs, newlines). For example

 “hello” “ ” “there”

represents the same string as

 “hello there”

and the same string as

 5

 “hell”
 “o t”
 “here”

The main reason for this construction is to facilitate construction of long strings not limited in length to a
single line.

7.	Structures	

A structure in C is a heterogeneous collection of data objects. “Heterogeneous” means that the objects
contained in a structure may be of different data types. The concept of a structure in C is essentially the
same as a Pascal record; identifiers are used to reference the objects, or fields, of a structure. A structure
type is defined by a template that gives a name to the type and specifies the names and data types of the
fields; here is an example of a structure template that might be appropriate for creating objects that have a
name, a weight, and an age:

struct item {
 char name[20];
 float weight;
 int age;
};

Here, struct is a keyword, item is a name, or tag, for the structure type, and name, weight, and age
are the field names. All the braces and semicolons shown are required.

The above example is essentially a type definition. It does not by itself create any structure objects; this can
be done by declaration, such as:

struct item obj, list[100], tabl[10][15];

This declaration creates a simple item structure called obj, an array list of 100 item structures, and a
two-dimensional array of item structures called tabl.

Reference to fields of an item structure can be made using the selector operator “.”, just as in Pascal. The
following are legal field references, given the above declarations:

obj.weight - the weight field of obj, of type float
obj.age - the age field of obj,of type int
obj.name[0] - the initial character of the name field of obj
list[3].weight -the weight field of component 3 of list
tabl[0][14].name[1] - the 2nd character of the name field of the item

 structure in row 0, column 14 of tabl

Structures may be nested; that is, a field of a structure may itself be a structure.

The fields of a structure may be given initial values by attaching an initializer to the definition, as in

struct item widget = {“SUPER WIDGET”, 26.6, 15};

8.	Program	Form	

 6

The term function in C means the same thing as it does in many other program languages: a block of code
that can be called, receive parameters, execute actions, and return a value to the caller. A function has a
name given by an identifier, and can contain declarations of local objects (variables, arrays, structures) not
accessible outside the function. A function may be recursive, either directly by calling itself, or indirectly
through a chain of calls to other functions.

A program in C is a collection of functions and global data objects. (An object is global if it is defined
outside the scope of any function.) A complete program must contain a function called main; this is where
execution always begins.

Thus, a C program in broad outline, looks like this:

data object definition
data object definition
…
function definition
function definition
function definition
…
data object definition
data object definition
data object definition
…
function definition
(etc.)

Data and function definitions may appear in any order, although the most common convention is to define
all the data objects first, then the functions. In contrast to Pascal and some other block-structured
languages, function definitions in C may not be nested; that is, a function definition may not contain the
definition of another function inside it.

The general form of a function definition is

<return-type-and-name> (<parameters>)
 <body>

The return-type-and-name specifies the name of the function (an identifier) and the data type of the value
returned to the caller. In typical cases, return-type-and-name is just a designator for the data type followed
by the name, although for complicated data types it can have a more elaborate form. If the function returns
no value (i.e., is like a Pascal procedure), this is indicated by specifying the keyword void as the return
type.

In ANSI C, parameters is a comma-separated list of parameter declarations, syntactically the same as
variable declarations except that the terminating semicolons are absent. If parameters is either the empty
list or the keyword void, the function passes no parameters. The enclosing parentheses are always
required however, even for an empty parameter list.

A function body is a compound statement, delimited by braces { and }, that contains local data declarations
as well as statements that define what actions the function is to perform. We will discuss this in detail in the
section dealing with statements.

Here are some sample function definitions; bodies are only indicated for now:

Function foo accepting one integer and two character parameters, and returning an integer:

int foo (int bar, char ch, char ch2)

 7

{ … }

or equivalently

foo (int bar, char ch, char ch2)
{ … }

(A missing return type defaults to integer. However, it is recommended that you always specify the return
type explicitly and not use this feature.)

Function sort accepting an integer array parameter and an integer parameter, returning no value. Note
that the array size is not given explicitly. Any integer array of any size may be passed when the function is
called.

void sort (int a[], int n)
{ … }

Function bloop that takes a struct item parameter (see previous section) and returns a value of the
same type:

struct item bloop(struct item thing)
{ … }

Function msg that receives no parameters and returns no value:

void msg(void)
{ … }

or

void msg()
{ … }

9.	Function	prototypes,	scope,	and	storage	class	

C uses static scoping rules such as are commonly found in other block-structured programming languages,
such as Pascal. A function may be referenced (e.g., called) at any point in a source file after a definition or
prototype (explained below) for the function appears. Similarly, a global data declaration applies from the
point it appears to the end of the source file, unless overridden by a local declaration of the same name.
Local declarations are visible at compile time only in the block where they appear; a local declaration of a
name always overrides a more global one for the same name for the duration of the block.

A function prototype, a concept introduced in ANSI C, is roughly the same as what in some other
languages is called a forward declaration: A specification of the function’s name, return-type, and
parameters, but without the body. A function prototype is terminated with a semicolon. The full definition
of a function given by a prototype may appear either later in the same source file as the prototype, or in a
different source file.

Here are function prototypes for the example functions of the previous section:

int foo(int, char, char); - note that only the types of the parameters need to be
specified, not the names

 8

void sort(int[], int);

struct item bloop(struct item thing); - on the other hand, you can specify
 parameter names if you want to

void msg(void);

Use of function prototypes is optional, but it is recommended that you use them. At the beginning of a
source file, list prototypes for all functions defined or called in that file (except for standard library
functions, in which this is done in associated header files like stdio.h). This is good documentation and
also enables the compiler to check consistency of parameter passing in function calls.

C allows the parts of a program to be split up among several different source files. This facilitates modular
programming, in which a collection of closely related functions and global data structures are put together
in a single source fie. There are some issues of scope connected with this. Ordinarily, a function or global
data structure defined in one source file is accessible from another. For functions, this is accomplished by
supplying a function prototype in the second source file. For data objects, one puts an external declaration
in the second file. For example, if one source file contains definitions of a global item structure obj and a
function sort as follows:

struct item obj;

void sort(int a[], int n)
{
 <interior of function body>
}

Then a second source file containing

extern struct item obj;
void sort(int[], int);

could manipulate obj and call sort

Often it is desirable to make a function or data object private, that is, accessible only in the file in which it
is defined. One can do this by using the static attribute, as follows, at the point of definition:

static struct item obj;

static void sort(int a[], int n)
{
 <interior of function body>
}

If this is done, attempts to refer to obj and sort from a different source file will fail.

The attribute static may also be given to local variables of a function, but the effect is different than for
globals: A local data object declared as static has its value saved between function calls (although it is
still referenceable by name only within the function body), whereas a local object without the static
attribute is discarded when the function returns. If the declaration contains an initializer, the initialization is
done for static objects only once, when the program is loaded; for local objects that are not static – called
automatic – the initialization is done every time the function is called.

 9

10.	Expressions	and	Operators	

An expression in C is built from constants, identifiers, operators, and grouping symbols such as
parentheses. Expressions specify rules for computing values at run time.

C has an unusually large number of operators. Here are the standard ones, grouped by category:

Arithmetic Operations:
+ (add), - (subtract), * (multiply), / (divide), % (remainder)

The division operator denotes integer division if its operands are integer, otherwise real.

Relational and Logical Operators:

> = < <= (greater, greater or equal, less, less or equal)

== != (equality, non-equality (note the double equals!!))

&& || (logical and, logical or -- left-to-right short-circuit

evaluation)

! (logical negation)

These operators always yield a value of 0 (false) or 1 (true). However, they accept values
other than these as operands, treating any non-0 as true. For example, the value of 6 || 0
is 1.

Increment and Decrement Operators:

++ (post-increment when used as postfix operator,
pre-increment when used as prefix operator)

-- (post-decrement when used as prefix operator, pre-decrement
when used as prefix operator)

 Explanation: if i is a variable, both ++i and i++ have the effect of increasing i by 1.

However, the value of ++i is the new value of i, whereas the value of i++ is the old value.
For example, if i is 6, then printf(“%d\n”, ++i) will display 7, but
printf(“%d\n”, i++) will display 6. Both will leave the value of i at 7.

Bitwise Operators:
 & | ^ ((bitwise and, or and exclusive or)

 << >> (left shift, right shift)

 ~ (ones complement)

 In contrast to the logical operators, the bitwise operators work bit-by-bit, and can yield results

other than 0 and 1. For example, 5 & 7 is equal to 5. (Write out the binary representations of
5 and 7 to see this.)

Assignment Operators:

 = (Assigns value of right-hand operand to the left-hand

operand. the latter must be a variable.)

 10

 C views assignment as an expression whose value is the same as that of the right-hand-side
expression. That means that assignments can be part of a larger expression. For example, if
a, b, c are int variables, then the expression

 c = (a = 2) + (b = 3)

 sets a to 2, b to 3, and c to 5. (This is not intended as an example of good coding practice!)

A more common use of “embedded assignment” is exemplified by the code fragment

 while ((c = getchar()) != EOF) . . .

 where a variable is simultaneously set and tested.

 C has a number of other assignment operators that have the effect of “updating” the left-hand-

side variable according to a specified operation and right-hand-side expression. The updating
assignment operators are

 += -= *= /= %= <<= >>= &= ^= !=

 For example, the assignment

 i += j

 adds the value of variable j to variable i.

Here are three different ways to increment variable i by 1:

 i = i + 1 ++i i += 1

Conditional Expressions:

 A conditional expression is formed from three operands and the characters ? and : thusly:

 expr1 ? expr2 : expr3

It is evaluated as follows: expr1 is evaluated. If it is non-zero (true), then expr2 is evaluated
and becomes the value of the conditional expression. If it is 0 (false), then expr3 is evaluated
and becomes the value of the expression. In all cases, exactly one of expr2 and expr3 are
evaluated.

 Thus, a conditional expression can be thought of as an expression-level version of if-then-else.

 Example: p *= ((n%2) ? 2 : 3)

 where n and p are integer. This multiplies p by 2 if n is odd and by 3 if n is even.

Other Operators:

 The array-subscripting operator [] and the field-selector operator . were covered in earlier

sections.

 Two important operators used in connection with pointers -- the address-of operator & and

the dereferencing operator * will be covered in the section on pointers.

 11

11	Statements	

Statements in C specify actions to be performed at runtime. They are found inside function

definitions.

Most of the statements in C have close analogs in other well-known block-structured languages,

such as Pascal. Since we are assuming that the reader is familiar with at least one such
language, our treatment here will be brief and expand only on features that are “unusual”.

Expression Statements and the null statement:

The simplest statements in C are the expression statements, formed by appending the semicolon character ;
to an expression. This can be done to any expression. An expression statement is executed by evaluating
the expression. Examples:

 x = (-b + sqrt(b*b – 4*a*c) / ((2*a); – assignment statement that solves a
 quadratic equation.

 ++index; – increment statement that adds 1 to variable
 index

 scanf(“%d”, &n); – function-call statement that reads an
 integer value into n.
 42; – do-nothing statement that expresses the
 meaning of life.

In general, semicolons function in C as terminators, in contrast to Pascal where they function as separators.
This means that semicolons are often required in C where they are not in Pascal, or required in Pascal
where they are not in C.

The official null statement in C is denoted by a semicolon ; all by itself. One finds it in places where
syntax requires a statement but there is nothing to be done, e.g. a while-loop with an empty body (which
comes up more frequently than one might think).

Compound Statements (Blocks):

A compound statement or block is a sequence of zero or more statements enclosed in braces { and }. The
statement may be preceded by declarations local to the block:

 {
 optional declarations
 statement-1
 statement-2

 statement-n
 }

A compound statement specifies sequential execution: The statements are executed in the order that they
appear. Note that semicolons are not used to separate the component statements, although a semicolon may
be required as a terminator to some of the compound statements.

Example:
 {
 int i, j;

 12

 scanf(“%d %d”, &i, &j); /* read integers from stdin */
 k = i * i + j * j; /* compute sum of their squares */
 printf(“%d\n”, k); /* write this on stdout */
 }

Note that i and j are local to the block; their values will be lost when control flows out of the block. Since
k is not declared in the block, it must either be global, local to some surrounding compound statement, or a
parameter of the function in which the block is located. Its value will still be available when the block
shown above finishes executing.

The body of a function must always be a block. Here is an example of a complete function definition:

 void starmess(char m[]) /*print message surrounded by *** */
 {
 printf(“*** %s ***\n”, m);
 }

This function could be called in an expression statement:

 starmess(“hello”);

This would print the output

 *** hello ***

to the standard output.

If:

The if-statement has one of the two forms

 if (expression) statement

or

 if (expression) statement-1 else statement-2

In the first case, the statement is executed if the expression if non-0 (true) and skipped otherwise. In the
second, the first statement is executed and the second skipped if the expression is non-0; otherwise, the
second statement is executed and the first one is skipped. Statement-1 and statement-2 are often called the
then-clause and else-clause, respectively.

Note that parentheses surrounding the expression are required. Note also the absence of a “then” keyword.

A clause of an if-statement may be any valid statement incuding another if-statement This means that
constructions like this work:

 if (expression-1)
 statement-1
 else if (expression-2)
 statement-2
 else if (expression-3)
 statement-3
 else
 statement-4

 13

Style note: When a clause of an if-statement is a compound statement, it is common (although not
universal) practice to put the opening { brace on the same line as the keyword that announces the clause,
and to put the closing brace at the same level of indentation as the keyword. For example:

 if (n > 0) {
 ++i;
 k += i;
 }
 else {
 --i;
 k -= i;
 }

The author of these notes favors this style, as it tends to make programs shorter (fewer lines) without
detracting from readability.

Switch and Break:

The switch statement allows multi-way decisions. Its general syntax is rather complicated; we present it
only in its most commonly used form, which is similar to Pascal's “case” statement:

 switch (expression) {
 case-labels
 statements
 case-labels
 statements

 case-labels
 statements
 }

Here, the expression should be of some integer type (int, long int, char, etc.). Each case label has
the form

 case constant :

where the constant is of the same type as the leading expression. The switch statement branches to a case-
label whose associated constant matches the current value of the expression and executes the statements
which appear from that point on. One of the case labels may be

 default:

where control will branch if none of the constants match the expression value. The default label can appear
anywhere that a case-label is allowed, although in most cases it is the last case-label.

If there is no default label and no case-label matches the expression, all the statements in the switch-
statement are skipped.

An important point to be aware of is that execution of statements in a switch statement does not
terminated when another case-label is encountered – in other words, execution of one case will “flow into”
the next case. This is not usually the desired behavior, and special statement called a break statement will
override it. Execution of a break statement causes immediate termination of the switch.

Example: The following switch statement increments one of three different counters according as the
current value of c is a vowel, consonant, or something else.

 14

 switch (c) {
 case 'a': case 'e': case 'i': case 'o': case 'u':
 case 'A': case 'E': case 'I': case 'O': case 'U':
 ++vcount;
 break;
 default:
 if (isalpha(c))
 ++ccount;
 else
 ++ocount;
 break
 }

While:

The while statement implements a test-first condition-controlled loop, with essentially the same semantics
as the while constructions in other structured languages, such as Pascal. The syntax is

 while (expression)
 statement

Execution is as follows: (1) The expression is evaluated. If it is zero (false), execution of the while
statement terminates. If it is non-zero (true), then (2) the statement is executed and step (1) is repeated.

The statement may be any valid C statement, but is perhaps most commonly a compound statement. In this
case, it is fairly common practice to put the opening brace on the same line as the while keyword:

 while (expression) {

 }

Break and continue:

We have already encountered the break statement as a way of “breaking out” of a switch statement. It can
also be used to terminate a loop, such as while statement, as in the following simple linear search of an
array:

 i = 0;
 while (b[i] != x) {
 ++i;
 if (i == n)
 break;
 }

The loop will terminate if either the value x is found or the entire array has been searched without finding x.

The semicolon following the keyword break is part of the statement and is always required.

The continue statement starts the next iteration of a loop. (The author of these notes seldom uses it.) Its
syntax is

 continue; (semicolon required)

For:

 15

The for statement sets up a loop. It is somewhat similar to Pascal's for statement and Fortran's do statement,
but more flexible. The syntax is

 for (expr1; expr2; expr3)
 statement

In most cases it is equivalent to

 expr1;
 while (expr2) {
 statement
 expr3;
 }

In other words, expr1 does loop initialization, expr2 determines loop continuation and expr3 is an
upgrading operation performed immediately before expr2 is evaluated again.

For example

 for (i = 0; i < 10; ++i)
 b[i] = 0;

is a counter-controlled loop that sets the first n elements of array b to zero. (What is the value of i when the
loop terminates?)

Because the expression components of a for statement can be any valid expressions of type integer, the C
for statement offers more flexibility than its counterparts in other well-known languages. For example:

 for (i = 0, j = n-1; i < j; ++i, --j) {
 tmp = b[i];
 b[i] = b[j];
 b[j] = tmp;
 }

controls two counters, one increasing and the other decreasing, to reverse the elements of an array. (The
commas in the expressions above are uses of the comma operator, to be described in the next section.)

The expressions in the for statement may be omitted, but the separating semi-colons are always required.
For example:

 for (; ;)
 ;

is the minimum for statement: no expressions and the null statement as the body. A missing expr2 is treated
as identically true; thus the above example is an infinite loop.

Do:

The do statement is like while, except that it tests the continuation condition at the bottom rather than the
top. Syntax:

 do
 statement
 while (expr);

 16

Thus the statement is always executed at least once. Execution of the do statement terminates when the
expression becomes zero.

 Return:

The return statement is used to return control from functions. It has two forms:

 return;

and

 return expression;

The first form is appropriate for functions of return type void that return no value to the caller. For other
functions, the second form should normally be used; the value of the expression is returned to the caller.
The expression should be of the same data type as the function's return type. Example:

 int max3 (int x, int y, int z) {
 int m;
 m = x;
 if (y > m)
 m = y;
 if (z > m)
 m = z;
 return m;
 }

12.		Two	unusual	operators:	sizeof	and	comma.	

In this section we cover two useful C operators for which many other commonly used programming
languages fail to have analogs.

The sizeof operator yields the size of a data object or type in bytes. The forms are

 sizeof (expression)

and

 sizeof(data type)

Note that parenthesis around the argument are required in the second form but not the first. For example,
given the declarations

 char c, str[50];
 int n, list[20];

and assuming (as is true on many machines) that a character occupies 1 byte (8 bits) and an integer 4 bytes
(32 bits), we would have

 sizeof c = 1
 sizeof str = 50
 sizeof n = 4
 sizeof list = 80
 sizeof (int)= 4

 17

The values returned by the sizeof operator are system-dependent. Sizeof is probably most often used in
conjunction with the memory allocator malloc() to allocate sufficient amount of memory for a new
object.

Another unusual but useful operator is the comma operator, denoted simply by the comma character. Its
form is

 expr1 , expr2

where expr1 and expr2 are expressions of the same data type. This is called a comma-expression. It is
evaluated by evaluating first expr1, then expr2. The value of expr2 is the value of the comma-expression.
Comma-expressions may be nested; one can write

 expr1 , expr2 , … , exprn

to evaluate each of the expressions in the order listed. Again, the value of the whole thing is the value of the
last expression.

The comma operator is useful in places where one expression is required but one needs to evaluate several,
e.g., as the components of a for statement. (See the example from the for statement section where the
comma operator was used.)

13.	Pointers	

A pointer is a value that denotes the location of an object. A synonym is address. Pointers are fundamental
in C programming; knowing how to use them is essential.

The address-of operator:

Given a named object that corresponds to a location in memory, the address-of operator can be used to
generate a pointer to it. For example, given the declarations

 int i;

char str[256];
struct thing foo;

the following expressions are valid:

 &i - address of variable i
 &str[0] - address of initial element (i.e., the “base address) of str
 &foo - address of structure foo

The following are not valid:

 &356 - can't take address of a constraint
 &&i - can't take address of an address

C considers pointers to objects of different data type to themselves be of different data type. In the above
example, &i is of type “pointer to int”, &str[0] is of type “pointer to char”, and &foo is of type
“pointer to struct foo”. The distinction is important in pointer arithmetic, discussed later in these notes.

 18

Just what a pointer “is” (i.e., the implementation) depends on the architecture of the underlying machine. If
the machine has a flat 32-bit address space, pointers are most likely just 32-bit quantities, i.e.
indistinguishable at the implementation level from long int quantities. If the address space is segmented
(as in the older Intel 8086 and 8088 microprocessors), pointer structure is more complicated, and in fact the
C implementation may distinguish different kinds of pointers (“near pointers, “far” pointers, etc.) – this is
seldom a concern in a Unix environment, however.

The address-of operator is often needed when passing an object as a function parameter, if the function is
supposed to change the value stored in the object. The reason is that parameters are always passed by value
in C; hence a function needs the address of an object in order to change the object. This is commonly seen
in the standard scanf function, which stores values read from memory into variables:

 scanf(“%d”, &i); - read value into variable i
 scanf(“%c”, &str[255]); - read character into last element of array str

Failure to use the & in the above examples will result in scanf interpreting the value of the variables as an
address, usually with disastrous results. (“Segmentation violation” is a common error message here; it
means that the program tried to access memory outside its address space.)

In contexts where a pointer is required, C interprets an unsubscripted array name as a pointer to the initial
element of the array. Thus,

 scanf(“%c”, str)

is legal and equivalent to

 scanf(“%c”, &str[0])

i.e., a scanf call that reads a single character into the initial element of str.

Note that the symbol used for the address-of operator is identical to that used for the bit-wise and operator.
The C compiler can always tell from context which meaning is intended, since address-of takes a single
argument and bitwise and takes two.

The dereferencing operator:

The dereferencing operator is the inverse of address-of: Applied to a pointer, it yields the object pointed to.
It is denoted by the symbol *.

For example, if i is a variable of type int, then the expression (*&i) is equivalent to i, and the
assignment

 *&i = 35

has the same effect as

 i = 35

(One would always write it the second way; the example illustrates only the concept of dereferencing, not a
practical use.)

The dereferencing operator is necessary, for example, in functions which receive pointer parameters, in
order that the function can manipulate the objects pointed to. Before discussing this in detail, we need to
talk about pointer variables and declarations.

 19

Pointer variables

A pointer variable is a variable whose value can be a pointer. The type of a pointer variable involves the
type of the object pointed to – e.g. a variable of type “pointer to int” should only be assigned addresses of
int objects, not of other types of objects such as chars.

Pointer variables are declared using dereferencing syntax, e.g.

 int *ip; -	declaration	of	variable	ip	of	type	“pointer	to	int”
 struct thing *tp; -	variable	of	type	pointer	to	struct thing
 int *iplist[100]; -	array	each	of	whose	element	is	a	“pointer	to	int”

Declaring a pointer variable does not in and of itself allocate an object for the variable to point to. This
must normally be done by assignment. Example:

 int i, *ip; - declare int variable i and pointer to int ip
 . . .
 i = 45;
 ip = &i; - store address of i in ip
 printf(“%d\n”, *ip); - prints 45

If a pointer does not point to an object , it is an error to dereference it (and may well give a segmentation
violation.)

Here is a complete function that swaps the values of two int variables. The parameters must be pointers to
the variables in order for the function to change the values of the variables:

 void swap (int *ip, int *jp) {
 int tmp;
 tmp = *ip;
 *ip = *jp;
 *jp = tmp;
 }

It is the caller's responsibility to ensure that the pointers point to valid integer objects when the function is
called. For example, if i and j are int variables, the following is a valid call to swap():

 swap(&i, &j);

Pointers to pointers to pointers . . . :

A pointer variable can be a pointer to another pointer object. For example:

 char **ipp; - ipp is pointer to pointer to int
 char **table[50]; - table is an array of pointers to pointers to characters

We'll say more about the uses of indirect pointers when we discuss pointer arithmetic.

Pointer arithmetic

In C, one can do arithmetic on pointers in much the same way that one does “address arithmetic” in
assembly languages. This unusual feature of C is one reason why C finds wide use in application areas
formerly thought suitable only for assembly – such as writing operating systems or device drivers.

One can write expressions of the form

 20

 pointer + offset
or pointer – offset

where pointer points into an array and offset is an integer. One can also increment and decrement pointers
into arrays using ++, –-, and assignment operators. It must be emphasized that these arithmetic
operations are defined only for pointers which point to array elements.

Example: The declarations

 int a[50], *p;

define a to be an integer array and p to be a pointer to an integer. The loop

 p = a; /* point a to the initial element of a */
 while (p < a + 100) {
 *p = 0;
 ++p;
 }

sets all the entries of a to 0. One can also do this with a for loop:

 for (p = a; p < a + 100; ++p)
 *p = 0;

The above example illustrates comparison of pointers: the relational operator < can be used between two
pointers provided they both point into the same array. The result is 1 (true) if the first operand points to an
earlier element of the array than the second operand, and 0 (false) otherwise. Definitions of the other
comparison operators (<=, >, >=, ==, !=) on pointers are similar.

WARNING: The effect of doing pointer arithmetic is undefined if the pointers involved do not point into an
array, or the result of any arithmetic operation points outside the bounds of the array. It is in general the
programmer's responsibility to guard against undefined operations of this kind, as C does not generally
detect such errors either at compile time or run time.

The null pointer.

The symbol 0, when used in a context where a pointer is expected, has a special meaning: the so-called null
pointer, a pointer value which is guaranteed not to point to any object. (Pascal programmers will recognize
this as being the same concept as nil in Pascal.) For clarity, the symbol NULL is defined in stdio.h to
be equivalent to 0.

The null pointer is useful as a sentinel to mark the end of a list of pointers.

Arrays of pointers and pointers to pointers

Arrays of pointers and indirect pointers (pointers to pointers) have many uses.
A typical one involves building and manipulating tables of variable-length character string.

Example: Consider the declarations

 char *strtab[50]; /* array of 50 character pointers */
 char **stp; /* used to point into strtab[] */
The statements
 strtab[0] = “hello”;

 21

 strtab[1] = “goodbye”;
 strtab[2] = “why”;
 strtab[3] = “never”;
 strtab[4] = NULL;

store pointers to some null-terminated strings in the first four elements of the array, and the null pointer in
the fifth. We can now use the pointer stp to scan the strings. For example, the following will print the
strings on the standard output, all on one line, each string followed by a space character:

 stp = strtab;
 while (*stp != NULL) {
 printf(“%s ”, *stp);
 ++stp;
 }

One could also accomplish the same thing using an integer index i and a for-loop:

 for (i = 0; strtab[i] != NULL; ++i)
 printf(“%s ”, strtab[i]);

In order for the comparisons with NULL to successfully terminate the above loops, it is necessary to have
explicitly stored NULL in the array previously. You can not assume that an uninitialized pointer is equal to
NULL.

14.	The	preprocessor;	#include;	#define;	

Before actual compilation, a C source file is run through a preprocessor that processes special directives. A
preprocessor directive is a line that begins with the character # followed by an identifier that specifies the
type of director. (Many compilers require that the # appear in column 1, while others allow it to be
indented as long as it is preceded only by blanks. To be safe, always put the # in column 1.)

The preprocessor makes certain textual replacements in the source code before passing it to the compiler.

The most frequently used preprocessor directives are #define and #include. The first is used to define
symbolic constants and macros; the second to include other files (typically so-called “header files”) as if
they were part of the source file.

#define:
This directive has the form

 #define identifier sequence-of-tokens
or
 #define identifier(parameter-list) sequence-of-tokens

The effect is to replace every occurrence of the identifier in the source by the sequence of sequence-of-
tokens following. The most common use is to introduce symbolic names for constants:

 #define PI 3.1415926
 #define LISTMAX 1000
 #define PROMPT “What next? ”
 #define ShowPrompt(msg) printf(“%s”, msg)

 22

The preprocessor will then literally substitute the definition for each occurrence of the symbol, e.g., in the
code fragments:

 int list[LISTMAX]; /* declare array of size 1000 */

 for (i = 0; i < LISTMAX; ++i)
 printf(“%d\n”, list[i]); /* print whole array */

 area = PI * radius * radius; /*compute circle area */

 ShowPrompt(PROMPT); /* display “What next? “ */

#include:

The #include directive causes another file (usually a text file containing C source code) to be inserted as
if its contents actually appeared in the file being compiled. Valid forms are

 #include <name-of-file>
and
 #include “name-of-file”

The symbols delimiting the file name determine where the preprocessor searches for the file. If brackets <
and > are used, the preprocessor first looks in the current directory; if it can't find the file there, it looks in a
standard system for header files (usually /usr/include in Unix systems). On the other hand, if quotes
are used to delimit the filename, only the current directory is searched.

By far the most common use of the #include directive is to make certain common definitions and
declarations available to more than one source file. Typical examples:

 #include <stdio.h> /* include defs needed for */
 /* standard i/o library */

 #include <string.h> /* defs for standard string */
 /* functions, like strcmp() */

 #include <ctype.h> /* defs of character-testing */
 /* macros, like isupper() */

 #include <signal.h> /* symbolic definition of Unix */
 /* signal values, such as SIGINT, */
 /* SIGKILL, etc. */

 #include “mystuff.h” /* do this for your own common */
 /* definitions and declarations */

And so on – there are many standard header files in a Unix environment. Typically, #include directives
appear at the beginning of a source file that need to access the facilities declared and defined in the
respective header files.

15.	Naming	conventions.	

Although usage is not completely standard, it is reasonably widespread practice to adhere to the following
case conventions in making up names for things in programs:

 23

 Variables, arrays, structures: all lower case
 #define constants all upper case
 #define macros with parameters: capitalize mixed upper/lower case

We have followed these conventions in all of the examples in these notes. We stress, however, that they are
only conventions and not requirements of the language.

Compiling,	Linking,	Executing	under	Unix	

In a Unix environment, one creates executable programs from C source by compiling and linking. The
standard command for accomplishing this is “cc”. Arguments to cc may include source files to be
compiled, object files to be linked, and additional options that control compilation or linking.

An alternative to cc on many systems is gcc, the Free Software Foundation or
“GNU” C compiler. It is often to be preferred when it is available, one reason for this being that gcc
accepts full ANSI C, whereas many versions of cc do not.

The cc and gcc commands are actually front ends that run several programs – the several passes of the
compiler, the assembler to produce object files and the linker to merge object files and runtime libraries
into a single executable file. Once an executable file has been produced, it can usually be executed simply
by typing its name followed by any arguments it might require.

The name of a C source file in general must end in “.c” for cc or gcc to recognize it. These commands
will also accept object files with names ending in “.o” and run the linker to produce an executable file.

Examples

(1) cc fubar.c

 This produces an executable file named (for obscure historical reasons) a.out. During
compilation, an object file was also produced, but this is normally deleted before cc terminates.

(2) cc fubar.c -o fubar

 This does the same thing as Example (1), except that the -o flag causes the executable filename to
be the following argument, in this case fubar, rather than a.out.

(3) cc -c fubar.c

 The -c flag instructs the compiler to produce an object file but to suppress execution of the linker,
so that an execcutable file is not produced. In this example, the compiler produces (and does not delete) an
object file named fubar.o.

(4) cc fubar.c -lm

 The -l flag (lower case “ell”, not the digit “1”), followed immediately by a library names,
causes the designated object library to be searched for definitions of functions and external data not defined
in the source files. In this case “m” denotes the math function library, which contains definitions of routines
such as sqrt().

(5) cc f1.o f2.o f3.c f4.c -o prog

 24

 This causes source files f3.c and f4.c to be compiled, then linked with previously compiled
object files f1.o and f2.o to produce the executable program prog.

(6) cc -S fubar.c

 This produces an assemby language translation, stored in the file fubar.s, useful if you want to
examine the code produced by the compiler.

Epilogue	

version 0.0 John Remmers’ original notes
 very lightly edited (spelling, consistent style)
 Table of Contents

Table	of	Contents	

Notes on C .. 1	
1. Identifiers ... 1	
2. Comments .. 1	
3. Primitive Data Types ... 2	
4. Literals ... 3	
5. Arrays ... 3	
6. Strings .. 4	
7. Structures ... 5	
8. Program Form .. 5	
9. Function prototypes, scope, and storage class ... 7	
10. Expressions and Operators ... 9	
11 Statements ... 11	
12. Two unusual operators: sizeof and comma. .. 16	
13. Pointers ... 17	
14. The preprocessor; #include; #define; .. 21	
15. Naming conventions. ... 22	
Compiling, Linking, Executing under Unix ... 23	
Epilogue ... 24	
Table of Contents ... 24	

