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(1) The Fourier Transform transforms a (|a| = n) vector in spatial or time domain to a vector in 
frequency domain. 
 
 
(2) The Fourier Transform is invertible. 
 
 
(3) Convolution (e.g., polynomial multiplication) is O(n2).  
 
 
(4) Convolution in spatial domain is the same as pair-wise multiplication in the frequency domain. 
 
 
(5) Fourier transform of a vector a can be performed by a matrix - vector multiply, where the matrix 
encodes the Fourier transform and the vector is a.  Matrix - vector multiply is O(n2). 
 
 
(6) The FFT uses a particular matrix, F, where each element is one of the n-th roots of 1 (unity).  The 
element of the matrix at row i, column j (starting at (0,0) ) is ωn

i*j .  To compute FFT(a) using the matrix 
F and vector a is O(n2) (see comment 5).  FFT-1 element at (i, j) is (1/n) ωn

-i*j 
 
 
(7) ωn

i has some nice properties: 
• ωn

i * ωn
j computes to one of the n complex n-th roots.  

• ωn
i%n = ωn

i  adding any multiple of n to the exponent, gives the original ωn
i ) 

• ωdn dk = ωn
k  (e.g., ω8

6 = ω4
3)  AKA cancellation property 

• If n = 0 is even, then the squares of the n nth-roots of unity are the n/2 complex (n/2)-th roots of 
unity.  E.g., Consider the 4 fourth roots of unity: ω4

1, ω4
2, ω4

3, ω4
4.  Square them: ω4

2, ω4
4, ω4

6, 
ω4

8.  By the previous cancellation property. The squared roots are ω2
1, ω2

2, ω2
3, ω2

4. By the mod 
property, those squared roots are ω2

1, ω2
0, ω2

1, ω2
0  which are exactly the two 2nd roots of unity. 

 
 
(8) The FFT can be implemented as a divide-and-conquer (hence a recursive) algorithm, giving O(n lg n).  
The analysis is similar to the analysis for merge-sort. 
 
 
(9) Convolution p1 ⊗ p2 = q, using FFT is O(n lg n) (rather than O(n2), see comment 3) because: 
 P1 = FFT(p1)  is O(n lg n) 
 P2 = FFT(p2)  is O(n lg n) 
 Q = P1 * P2 (pairwise) is O(n) 
 q = FFT-1(Q) is O(n lg n) 
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(10) The pseudocode for FFT (recursive version) from Cormen, Leisserson, et al, is: 
 
FFT (a)   {   // 1D array a = (a0, a1, … , an-1) 
1 n = length (a)  // n is a power of 2 
2.  if (n == 1) 
3.  return a 
4. ωn = e2πi/n   // ωn

1 
5. ω = 1 
6. a[0] = (a0, a2, a4, … an-2 ) 
7. a[1] = (a1, a3, a5, … an-1 ) 
8.  y[0] = FFT(a[0]) 
9. y[1] = FFT(a[1]) 
10. for (k=0; k <= n/2-1; k++) { 
11.  yk = yk[0] + ω yk[1] 
12.   yk+(n/2) = yk[0] - ω yk[1] 
13.  w = ω wn 
  } 
14.  return y   // y is vector, |y| = n 
  } 
 
 
(11)  Unit circle with roots, FFT, and FFT-1 are given on the following pages. 
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