Notes on Recursive FFT (Fast Fourier Transform) algorithm
Fall 2010, COSC 511
Susan Haynes

(1) The Fourier Transform transforms a (|a| = n) vector in spatial or time domain to a vector in
frequency domain.

(2) The Fourier Transform is invertible.
(3) Convolution (e.g., polynomial multiplication) is O(n?).
(4) Convolution in spatial domain is the same as pair-wise multiplication in the frequency domain.

(5) Fourier transform of a vector a can be performed by a matrix - vector multiply, where the matrix
encodes the Fourier transform and the vector is a. Matrix - vector multiply is O(n?).

(6) The FFT uses a particular matrix, F, where each element is one of the n-th roots of 1 (unity). The
element of the matrix at row i, column j (starting at (0,0)) is @, . To compute FFT (a) using the matrix
F and vector a is O(n”) (see comment 5). FFT™' element at (i, j) is (1/n) w, "

(7) », has some nice properties:
o wni * wnj computes to one of the n complex n-th roots.
* ®,""=w, adding any multiple of n to the exponent, gives the original w,)
o ogm ¥ = (e.g., ws’=w,’) AKA cancellation property
¢ Ifn=0is even, then the squares of the n nth-roots of unity are the n/2 complex (n/2)-th roots of
unity. E.g., Consider the 4 fourth roots of unity: w4l, w42, w43, w44. Square them: w42, w44, w46,
w,4®. By the previous cancellation property. The squared roots are w,', w,?, w,”, w,*. By the mod

property, those squared roots are w,', ,’, w,', w,* which are exactly the two 2™ roots of unity.

(8) The FFT can be implemented as a divide-and-conquer (hence a recursive) algorithm, giving O(n Ig n).
The analysis is similar to the analysis for merge-sort.

(9) Convolution pl ® p2 = q, using FFT is O(n lg n) (rather than O(n?), see comment 3) because:
P1 =FFT(pl) is O(nIgn)
P2 =FFT(p2) is O(nIgn)
Q=PI * P2 (pairwise) is O(n)
q=FFT"(Q) is O(n Ig n)

| Fall 2010

(10) The pseudocode for FFT (recursive version) from Cormen, Leisserson, et al, is:

FFT (a) { // 1D array a = (ag, ai, .. , ap-1)
1 n = length (a) // n is a power of 2
2 if (n == 1)
3. return a
4. W, = eZni/n // (Dnl
5 w =1
6 al? (2o, @z, @ay w @n-2)
7 ath = (a1, as, as, . an1)
8. y[O] — FFT(a[O])
9. y = FFT (al'!)
10. for (k=0; k <= n/2-1; k++) {
11. vie = vl + o g
12. Virmz) = Ye'0 = 0y
13. W = O W,
}
14. return y // y is vector, |y| = n

}

(11) Unit circle with roots, FFT, and FFT™ are given on the following pages.

) Fall 2010

FFT:

'\ZL

f -
= |
LI
“ Q
3 3 =

Fall 2010

FFT= | w

(
©

Fall 2010

[{ i [l-
’ /, -l ‘,4.'«
I IR B
[__l -+ -l f’_}
r o] L L]
fw w! N7 ww
PR } » = =% -3
fFT= L [0 » w W
q' 2 % ~ 4 -b
W w N w
]
W Wt w h
L T R R
I} R
| A~ | -+
[I Bt
-1 =
[-l

—~
[
4z
|
]
<
.
.
“l-i
Y
—
(R79
A
L
v
It

Y.V, Tom -
3 3 3 3 3 3 3 3 J .I_TL - I’k = (”.A - —)R
L] & °
rr g 4, ¥4 Q 2 . -
3 3 I 33 T a4 ke le g S
oty v R sl T e e
3 13 303 3 3y ™3 =
lw d-w 0U >~ 0 < ° -) | \ — l_r
L 3 "3 Yy "y T S o ool o
3 -3 bw IN 4W 7U ..w - [N T | { -) { - =\ _‘yﬂl,.
3
e d - | \
3"y Ty 2 °y .fw .q.w ..w - R : ARl R, P - _, <
"3 Tq ¢ s -2 <
SE —_ - -

LA
w
,f«"i MP,‘,S,,;_'
J o
*kuum,mwf
X ex®

% 2
~ 1=

x 37
AN

A\

c*

L

T2
X
v

* taleidate the pectz,
I'L
|

Ut
f
fn

Fall 2010

