Notes on Recursive FFT (Fast Fourier Transform) algorithm
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Susan Haynes

(1) The Fourier Transform transforms a (|a| = n) vector in spatial or time domain to a vector in
frequency domain.

(2) The Fourier Transform is invertible.
(3) Convolution (e.g., polynomial multiplication) is O(n?).
(4) Convolution in spatial domain is the same as pair-wise multiplication in the frequency domain.

(5) Fourier transform of a vector a can be performed by a matrix - vector multiply, where the matrix
encodes the Fourier transform and the vector is a. Matrix - vector multiply is O(n?).

(6) The FFT uses a particular matrix, F, where each element is one of the n-th roots of 1 (unity). The
element of the matrix at row i, column j (starting at (0,0) ) is @, . To compute FFT (a) using the matrix
F and vector a is O(n”) (see comment 5). FFT™' element at (i, j) is (1/n) w, "

(7) », has some nice properties:
o wni * wnj computes to one of the n complex n-th roots.
*  ®,""=w, adding any multiple of n to the exponent, gives the original w, )
o ogm ¥ = (e.g., ws’=w,’) AKA cancellation property
¢ Ifn=0is even, then the squares of the n nth-roots of unity are the n/2 complex (n/2)-th roots of
unity. E.g., Consider the 4 fourth roots of unity: w4l, w42, w43, w44. Square them: w42, w44, w46,
w,4®. By the previous cancellation property. The squared roots are w,', w,?, w,”, w,*. By the mod

property, those squared roots are w,', ,’, w,', w,* which are exactly the two 2™ roots of unity.

(8) The FFT can be implemented as a divide-and-conquer (hence a recursive) algorithm, giving O(n Ig n).
The analysis is similar to the analysis for merge-sort.

(9) Convolution pl ® p2 = q, using FFT is O(n lg n) (rather than O(n?), see comment 3) because:
P1 =FFT(pl) is O(nIgn)
P2 =FFT(p2) is O(nIgn)
Q=PI * P2 (pairwise) is O(n)
q=FFT"(Q) is O(n Ig n)
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(10) The pseudocode for FFT (recursive version) from Cormen, Leisserson, et al, is:

FFT (a) { // 1D array a = (ag, ai, .. , ap-1)
1 n = length (a) // n is a power of 2
2 if (n == 1)
3. return a
4. W, = eZni/n // (Dnl
5 w =1
6 al? (2o, @z, @ay w @n-2 )
7 ath = (a1, as, as, . an1 )
8. y[O] — FFT(a[O])
9. y = FFT (al'!)
10. for (k=0; k <= n/2-1; k++) {
11. vie = vl + o g
12. Virmz) = Ye'0 = 0y
13. W = O W,
}
14. return y // y is vector, |y| = n

}

(11) Unit circle with roots, FFT, and FFT™ are given on the following pages.
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