
## Monte Carlo method: find the intersection of three circles

## Problem setup:

| Circle | (x, y)   | radius |
|--------|----------|--------|
| C1     | (x1, y1) | r1     |
| C2     | (x2, y2) | r2     |
| C3     | (x3, y3) | r3     |

## See the figure.



The points marked 'x' do not lie within all three circles. The points marked ' $\bullet$ ' do lie within all three circles ( I have drawn only three  $\bullet$ s)

The area in the intersection of the three circles is measured by the (points within C1 && C2 && C3) / # points in bounding box) \* area of bounding box

```
Pseudocode:
// To simplify, we'll put the bounding box at (0, 0) to (xmax, ymax)
// Other locations for the bounding box are straight-forward extension
bbCount = 0;
bbArea = xmax * ymax;
areaCount = 0;
repeat many times {
     // generate (x, y) within bounding box
     generate random x between 0 and xmax;
     generate random y between 0 and ymax;
     bbCount++;
                           // increment area of bb counter
     if ( withinC(x, y, x1, y1, r1) &&
           withinC(x, y, x2, y2, r2) &&
           withinC(x, y, x3, y3, r3)
                areaCount++;  // generated point is under curve
     }
return (areaCount / bbCount) * bbArea;
boolean withinC (x, y, xC, yC, rC) {
     if ((x, y) is within the circle radius rC located at (xC, yC))
           return (true);
           else return (false);
     }
```