COSC 471/571

Quiz q0404
WINTER 2019

Name:
WITH SOLUTIONS

See next page for Timestamping Protocol.

Three transactions:

T1

T2

T3

begin

begin

begin

read(x)

read(y)

read(y)

…

…

…

write(x)

write(y)

write(y)

…

commit

…

write(z)

write(z)

commit

commit

… :
Local operation on data

ri(x):
Transaction i reads datum x

wj(y) :
Transaction j writes datum y

bk :
Transaction k begins
Consider this schedule. Note, none of the three transactions have completed (the schedule is not complete). Time proceeds left to right, the time is given t1, t2, …

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
b1 r1(x) w1(x) b2 r2(y) b3 r3(y) w2(y) w3(y) w3(z)

1. After the operation at t10 completes, what transaction state (ACTIVE, PARTLY COMMITTED, COMMITED, FAILED, ABORTED) is each transaction in?
T1:
active

T2:
abort

T3:
active

2. After the operation at time t10 completes, what process state (RUN, READY, BLOCKED) is each transaction in? If a transaction has been killed (and not yet restarted) answer: “killed”.
Assuming there is no context switch after instruction at time= t10 completes
T1:
READY

T2:
KILLED

T3:
RUN

3. For the schedule in Question #1, after the operation at time t10 completes, what is the timestamp for each transaction? If a transaction has been killed (and not yet restarted), give the answer: “killed”.
T1:
1

T2:
KILLED

T3:
6

4. For the schedule in Question #1, what are the pairs of conflicting operations?
r2(y) @ t5 --- w3(y) @ t9

r3(y) @ t7 --- w2(y) @ t8

w2(y) @ t8 --- w3(y) @ t9

Timestamping prevents deadlock by roll back and re-start of a transaction that would cause deadlock.
Protocol is as follows.
Each transaction’s timestamp is the time of its starting execution, ts(T). If a transaction is aborted, then its timestamp is updated to its new start time.
Each data item x has two timestamps: read_ts(x) and write_ts(x).
read_ts(x) and write_ts(x)are initialized to 0.
For transaction T with timestamp ts(T)

// T issues read(x):

if (ts(T) < write_ts(x)) {

abort, then restart T;

}

else {

read_ts(x) = max (ts(T), read_ts(x));

perform the read;

}

// T issues write(x):

if (ts(T) < read_ts(x)) {

abort, then restart T;

}

else if (ts(T) < write_ts(x)) {

// obsolete write: ignore write(x) operation

}

else {

write_ts(x) = ts(T);

perform the write;

}

	time
	T1
	T1:ts
	T2
	T2:t2
	T3
	T3:ts
	x:rs
	x:ws
	y:rs
	y:ws
	z:rs
	z:ws

	t1
	b
	1
	
	
	
	
	
	
	
	
	
	

	t2
	r(x)
	
	
	
	
	
	1
	
	
	
	
	

	t3
	w(x)
	
	
	
	
	
	
	1
	
	
	
	

	t4
	
	
	b
	4
	
	
	
	
	
	
	
	

	t5
	
	
	r(y)
	
	
	
	
	
	4
	
	
	

	t6
	
	
	
	
	b
	6
	
	
	
	
	
	

	t7
	
	
	
	
	r(y)
	
	
	
	6
	
	
	

	t8
	
	
	w(y)

ABORT
	
	
	
	
	
	
	
	
	

	t9
	
	
	
	
	w(y)
	
	
	
	
	6
	
	

	t10
	
	
	
	
	w(z)
	
	
	
	
	
	
	6

