
APPENDIX

F File Organizations and Indexes

Objectives

In this appendix you will learn:

•	 The	distinction	between	primary	and	secondary	storage.

•	 The	meanings	of	file	organization	and	access	method.

•	 How	heap	files	are	organized.

•	 How	sequential	files	are	organized.

•	 How	hash	files	are	organized.

•	 What	an	index	is	and	how	it	can	be	used	to	speed	up	database	retrievals.

•	 The	distinction	between	a	primary,	secondary,	and	clustered	indexes.

•	 How	indexed	sequential	files	are	organized.

•	 How	multilevel	indexes	are	organized.

•	 How	B+-trees	are	organized.

•	 How	bitmap	indexes	are	organized.

•	 How	join	indexes	are	organized.

•	 How	indexed	clusters	and	hash	clusters	are	organized.

•	 How	to	select	an	appropriate	file	organization.

Steps 4.2 and 4.3 of the physical database design methodology presented in 
Chapter 18 require the selection of appropriate file organizations and indexes for 
the base relations that have been created to represent the part of the enterprise 
being modeled. In this appendix we introduce the main concepts regarding the 
physical storage of the database on secondary storage devices such as magnetic 
disks and optical disks. The computer’s primary storage—that is, main memory—
is inappropriate for storing the database. Although the access times for primary 
storage are much faster than secondary storage, primary storage is not large or 
reliable enough to store the quantity of data that a typical database might require. 
Because the data stored in primary storage disappears when power is lost, we refer 
to primary storage as volatile storage. In contrast, the data on secondary storage 
persists through power loss, and is consequently referred to as nonvolatile storage. 
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In addition, the cost of storage per unit of data is an order of magnitude greater 
for primary storage than for disk storage.

Structure of this Appendix In Section F.1 we introduce the basic con-
cepts of physical storage. In Sections F.2–F.4 we discuss the main types of file 
organization: heap (unordered), sequential (ordered), and hash files. In Section 
F.5 we discuss how indexes can be used to improve the performance of data-
base retrievals. In particular, we examine indexed sequential files, multilevel 
indexes, B+-trees, bitmap indexes, and join indexes. Finally, in Section F.6, we 
provide guidelines for selecting file organizations. The examples in this chap
ter are drawn from the DreamHome case study documented in Section 11.4 and 
Appendix A.

F.1 Basic Concepts

The database on secondary storage is organized into one or more files; each file 
consists of one or more records and each record consists of one or more fields. 
Typically, a record corresponds to an entity and a field to an attribute. Consider the 
reduced Staff relation from the DreamHome case study shown in Figure F.1.

We may expect each tuple in this relation to map to a record in the operating 
system file that holds the Staff relation. Each field in a record would store one attrib-
ute value from the Staff relation. When a user requests a tuple from the DBMS—for 
example, Staff tuple SG37—the DBMS maps this logical record on to a physical 
record and retrieves the physical record into the DBMS buffers in primary storage 
using the operating system file access routines.

The physical record is the unit of transfer between disk and primary storage, and 
vice versa. Generally, a physical record consists of more than one logical record, 
although depending on size, a logical record can correspond to one physical 
record. It is even possible for a large logical record to span more than one physical 
record. The terms block and page are sometimes used in place of physical record. 
In the remainder of this appendix we use the term “page.” For example, the Staff 
tuples in Figure F.1 may be stored on two pages, as shown in Figure F.2.

Figure F.2 Storage	of	Staff	relation	in	pages.
Figure F.1 Reduced	Staff	relation	
from	DreamHome	case	study.
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The order in which records are stored and accessed in the file is dependent on 
the file organization.

The main types of file organization are:

•	 Heap (unordered) files: Records are placed on disk in no particular order.
•	 Sequential (ordered) files: Records are ordered by the value of a specified field.
•	 Hash files: Records are placed on disk according to a hash function.

Along with a file organization, there is a set of access methods.

File 
Organization

The physical arrangement of data in a file into records and pages 
on secondary storage.

Access method The steps involved in storing and retrieving records from a file.

Because some access methods can be applied only to certain file organizations (for 
example, we cannot apply an indexed access method to a file without an index), the 
terms file organization and access method are used interchangeably. In the remainder 
of this appendix, we discuss the main types of file organization and access tech-
niques and provide guidelines for their use.

F.2 Unordered Files

A unordered file, sometimes called a heap file, is the simplest type of file organiza-
tion. Records are placed in the file in the same order as they are inserted. A new 
record is inserted in the last page of the file; if there is insufficient space in the last 
page, a new page is added to the file. This process makes insertion very efficient. 
However, as a heap file has no particular ordering with respect to field values, a 
linear search must be performed to access a record. A linear search involves read-
ing pages from the file until the required record is found. This makes retrievals 
from heap files that have more than a few pages relatively slow, unless the retrieval 
involves a large proportion of the records in the file.

To delete a record, the required page first has to be retrieved, the record marked 
as deleted, and the page written back to disk. The space with deleted records is not 
reused. Consequently, performance progressively deteriorates as deletions occur. 
This means that heap files have to be periodically reorganized by the DBA to 
reclaim the unused space of deleted records.

Heap files are one of the best organizations for bulk loading data into a table. 
Because records are inserted at the end of the sequence, there is no overhead of 
calculating what page the record should go on.

F.3 Ordered Files

The records in a file can be sorted on the values of one or more of the fields, form-
ing a key-sequenced data set. The resulting file is called an ordered or sequential 
file. The field(s) that the file is sorted on is called the ordering field. If the ordering 
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field is also a key of the file, and therefore guaranteed to have a unique value in each 
record, the field is also called the ordering key for the file. For example, consider 
the following SQL query:

SELECT *
FROM Staff

ORDER BY staffNo;

If the tuples of the Staff relation are already ordered according to the ordering 
field staffNo, it should be possible to reduce the execution time for the query, as no 
sorting is necessary. (Although in Section 4.2 we stated that tuples are unordered, 
this applies as an external (logical) property, not as an implementation or physical 
property. There will always be a first record, second record, and nth record.) If the 
tuples are ordered on staffNo, under certain conditions we can use a binary search 
to execute queries that involve a search condition based on staffNo. For example, 
consider the following SQL query:

SELECT *
FROM Staff

WHERE staffNo = ‘SG37’;

If we use the sample tuples shown in Figure F.1 and for simplicity assume there is 
one record per page, we would get the ordered file shown in Figure F.3. The binary 
search proceeds as follows:

(1) Retrieve the mid-page of the file. Check whether the required record is between 
the first and last records of this page. If so, the required record lies on this page 
and no more pages need to be retrieved.

(2) If the value of the key field in the first record on the page is greater than 
the required value, the required value, if it exists, occurs on an earlier page. 
Therefore, we repeat the previous steps using the lower half of the file as the 
new search area.

(3) If the value of the key field in the last record on the page is less than the 
required value, the required value occurs on a later page, and so we repeat the 
previous steps using the top half of the file as the new search area. In this way, 
half the search space is eliminated from the search with each page retrieved.

In our case, the middle page is page 3, and the record on the retrieved page (SG14) 
does not equal the one we want (SG37). The value of the key field in page 3 is less 
than the one we want, so we can discard the first half of the file from the search. 
We now retrieve the mid-page of the top half of the file, that is, page 5. This time 
the value of the key field (SL21) is greater than SG37, which enables us to discard 

Figure F.3  
Binary	search	on	
an	ordered	file.
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the top half of this search space. We now retrieve the mid-page of the remaining 
search space, that is, page 4, which is the record we want.

In general, the binary search is more efficient than a linear search. However, 
binary search is applied more frequently to data in primary storage than secondary 
storage.

Inserting and deleting records in a sorted file are problematic because the order 
of records has to be maintained. To insert a new record, we must find the correct 
position in the ordering for the record and then find space to insert it. If there is 
sufficient space in the required page for the new record, then the single page can be 
reordered and written back to disk. If this is not the case, then it would be necessary 
to move one or more records on to the next page. Again, the next page may have 
no free space and the records on this page must be moved, and so on.

Inserting a record near the start of a large file could be very time-consuming. 
One solution is to create a temporary unsorted file, called an overflow (or transaction) 
file. Insertions are added to the overflow file, and periodically, the overflow file is 
merged with the main sorted file. This makes insertions very efficient, but has a 
detrimental effect on retrievals. If the record is not found during the binary search, 
the overflow file has to be searched linearly. Inversely, to delete a record we must 
reorganize the records to remove the now free slot.

Ordered files are rarely used for database storage unless a primary index is 
added to the file (see Section F.5.1).

F.4 Hash Files

In a hash file, records do not have to be written sequentially to the file. Instead, a 
hash function calculates the address of the page in which the record is to be stored 
based on one or more fields in the record. The base field is called the hash field, or 
if the field is also a key field of the file, it is called the hash key. Records in a hash 
file will appear to be randomly distributed across the available file space. For this 
reason, hash files are sometimes called random, or direct, files.

The hash function is chosen so that records are as evenly distributed as possible 
throughout the file. One technique, called folding, applies an arithmetic function, 
such as addition, to different parts of the hash field. Character strings are converted 
into integers before the function is applied using some type of code, such as alpha-
betic position or ASCII values. For example, we could take the first two characters 
of the Staff number, staffNo, convert them to an integer value, then add this value 
to the remaining digits of the field. The resulting sum is used as the address of the 
disk page in which the record is stored. An alternative, more popular technique, 
is the division-remainder hashing. This technique uses the MOD function, which 
takes the field value, divides it by some predetermined integer value, and uses the 
remainder of this division as the disk address.

The problem with most hashing functions is that they do not guarantee a unique 
address, because the number of possible values a hash field can take is typically 
much larger than the number of available addresses for records. Each address gen-
erated by a hashing function corresponds to a page, or bucket, with slots for multi-
ple records. Within a bucket, records are placed in order of arrival. When the same 
address is generated for two or more records, a collision is said to have occurred 
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(the records are called synonyms). In this situation, we must insert the new record 
in another position, because its hash address is occupied. Collision management 
complicates hash file management and degrades overall performance. There are 
several techniques that can be used to manage collisions:

•	 open addressing
•	 unchained overflow
•	 chained overflow
•	 multiple hashing

Open addressing

If a collision occurs, the system performs a linear search to find the first available 
slot to insert the new record. When the last bucket has been searched, the system 
starts back at the first bucket. Searching for a record employs the same technique 
used to store a record, except that the record is considered not to exist when 
an unused slot is encountered before the record has been located. For example, 
assume we have a trivial hash function that takes the digits of the staff number 
MOD 3, as shown in Figure F.4. Each bucket has two slots and staff records SG5 
and SG14 hash to bucket 2. When record SL41 is inserted, the hash function gener-
ates an address corresponding to bucket 2. As there are no free slots in bucket 2, 
it searches for the first free slot, which it finds in bucket 1, after looping back and 
searching bucket 0.

Unchained overflow

Instead of searching for a free slot, an overflow area is maintained for collisions 
that cannot be placed at the hash address. Figure F.5 shows how the collision 
illustrated in Figure F.4 would be handled using an overflow area. In this case, 

Figure F.4  
Collision	
resolution	using	
open	addressing.

Figure F.5  
Collision	
resolution	using	
overflow.
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instead of searching for a free slot for record SL41, the record is placed in the 
overflow area. At first sight, this may appear not to offer much performance 
improvement. However, using open addressing, collisions are located in the first 
free slot, potentially causing additional collisions in the future with records that 
hash to the address of the free slot. Thus, the number of collisions that occur is 
increased and performance is degraded. On the other hand, if we can minimize 
the number of collisions, it will be faster to perform a linear search on a smaller 
overflow area.

Chained overflow

As with the previous technique, an overflow area is maintained for collisions that 
cannot be placed at the hash address. However, with this technique each bucket has 
an additional field, sometimes called a synonym pointer, that indicates whether a 
collision has occurred and, if so, points to the overflow page used. If the pointer is 
zero, no collision has occurred. In Figure F.6, bucket 2 points to an overflow bucket 
3; buckets 0 and 1 have a 0 pointer to indicate that there have been no collisions 
with these buckets yet.

A variation of this technique provides faster access to the overflow record by 
using a synonym pointer that points to a slot address within the overflow area 
rather than a bucket address. Records in the overflow area also have a synonym 
pointer that gives the address in the overflow area of the next synonym for the 
same target address, so that all synonyms for a particular address can be retrieved 
by following a chain of pointers.

Multiple hashing

An alternative approach to collision management is to apply a second hashing func-
tion if the first one results in a collision. The aim is to produce a new hash address 
that will avoid a collision. The second hashing function is generally used to place 
records in an overflow area.

With hashing, a record can be located efficiently by first applying the hash 
function and, if a collision has occurred, using one of these approaches to locate 
its new address. To update a hashed record, the record first has to be located. 
If the field to be updated is not the hash key, the update can take place and the 
record written back to the same slot. However, if the hash field is being updated, 
the hash function has to be applied to the new value. If a new hash address is 
generated, the record has to be deleted from its current slot and stored at its new 
address.

Figure F.6  
Collision	
resolution	using	
chained	overflow.
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F.4.1 Dynamic Hashing
The previously described hashing techniques are static, in that the hash address 
space is fixed when the file is created. When the space becomes too full, it is said 
to be saturated, and the DBA must reorganize the hash structure. This may involve 
creating a new file with more space, choosing a new hashing function, and map-
ping the old file to the new file. An alternative approach is dynamic hashing, which 
allows the file size to change dynamically to accommodate growth and shrinkage of 
the database.

There have been many different dynamic hashing techniques proposed (see, for 
example, Larson, 1978; Fagin et al., 1979; Litwin, 1980). The basic principle of 
dynamic hashing is to manipulate the number generated by the hash function as a 
bit sequence, and to allocate records to buckets based on the progressive digitiza-
tion of this sequence. A dynamic hash function generates values over a large range, 
namely b-bit binary integers, where b is typically 32. We briefly describe one type of 
dynamic hashing called extendable hashing.

Buckets are created as required. Initially, records are added to the first bucket 
until the bucket becomes full, at which point we split the bucket up depending on 
i bits of the hash value, where 0 # ≤i , b. These i bits are used as an offset into a 
Bucket Address Table (BAT), or directory. The value of i changes as the size of 
the database changes. The directory has a header that stores the current value of i, 
called the depth, together with 2i pointers. Similarly, for each bucket there is a local 
depth indicator that specifies the value of i used to determine this bucket address. 
Figure F.7 shows an example of extendable hashing. We assume that each bucket 
has space for two records and the hash function uses the numerical part of the staff 
number, staffNo.

Figure F.7(a) shows the directory and bucket 0 after staff records SL21 and SG37 
have been inserted. When we come to insert record SG14, bucket 0 is full, so we 
have to split bucket 0 based on the most significant bit of the hash value, as shown 
in Figure F.7(b). The directory contains 21 pointers for the bit values 0 and 1 (i 5 1).  
The depth of the directory and the local depth of each bucket become 1. Again, 
when we come to insert the next record SA9, bucket 0 is again full, so we have to 
split the bucket based on the two most significant bits of the hash value, as shown 
in Figure F.7(c). The directory contains 22 pointers for the bit values 00, 01, 10, 
and 11 (i 5 2). The depth of the directory and the local depth of buckets 0 and 2 
become 2. Note that this does not affect bucket 1, so the directory for bits 10 and 
11 both point to this bucket, and the local depth pointer for bucket 1 remains at 1.
When a bucket becomes empty after a deletion, it can be deleted together with 
its entry in the directory. In some schemes, it is possible to merge small buckets 
together and cut the size of the directory by half.

F.4.2 Limitations of Hashing
The use of hashing for retrievals depends upon the complete hash field. In gen-
eral, hashing is inappropriate for retrievals based on pattern matching or ranges 
of values. For example, to search for values of the hash field in a specified range, 
we require a hash function that preserves order: that is, if rmin and rmax are mini-
mum and maximum range values, then we require a hash function h, such that 
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h(rmin) < h(rmax). In addition, hashing is inappropriate for retrievals based on a 
field other than the hash field. For example, if the Staff table is hashed on staffNo, 
then hashing could not be used to search for a record based on the IName field. In 
this case, it would be necessary to perform a linear search to find the record, or 
add IName as a secondary index (see Section F.5.3).

F.5 Indexes

In this section we discuss techniques for making the retrieval of data more efficient 
using indexes.

Figure F.7  
Example	of	
extendible	
hashing:	(a)	after	
insert	of	SL21	
and	SG37;	(b)	
after	insert	of	
SG14;	(c)	after	
insert	of	SA9.

Index
A data structure that allows the DBMS to locate particular records in a file 
more quickly and thereby speed response to user queries.

An index in a database is similar to an index in a book. It is an auxiliary structure 
associated with a file that can be referred to when searching for an item of infor-
mation, just like searching the index of a book, in which we look up a keyword to 
get a list of one or more pages on which the keyword appears. An index obviates 
the need to scan sequentially through the file each time we want to find the item. 
In the case of database indexes, the required item will be one or more records in 
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a file. As in the book index analogy, the index is ordered, and each index entry 
contains the item required and one or more locations (record identifiers) where the 
item can be found.

Although indexes are not strictly necessary to use the DBMS, they can have a sig-
nificant impact on performance. As with the book index, we could find the desired 
keyword by looking through the entire book, but this approach would be tedious 
and time-consuming. Having an index at the back of the book in alphabetical order 
of keyword allows us to go directly to the page or pages we want.

An index structure is associated with a particular search key and contains records 
consisting of the key value and the address of the logical record in the file contain-
ing the key value. The file containing the logical records is called the data file and 
the file containing the index records is called the index file. The values in the index 
file are ordered according to the indexing field, which is usually based on a single 
attribute.

F.5.1 Types of Index
There are different types of index, the main ones being:

•	 Primary index. The data file is sequentially ordered by an ordering key field (see 
Section F.3), and the indexing field is built on the ordering key field, which is 
guaranteed to have a unique value in each record.

•	 Clustering index. The data file is sequentially ordered on a non-key field, and 
the indexing field is built on this non-key field, so that there can be more than 
one record corresponding to a value of the indexing field. The non-key field is 
called a clustering attribute.

•	 Secondary index. An index that is defined on a non-ordering field of the data 
file.

A file can have at most one primary index or one clustering index, and in addition 
can have several secondary indexes. In addition, an index can be sparse or dense: a 
sparse index has an index record for only some of the search key values in the file; 
a dense index has an index record for every search key value in the file.

The search key for an index can consist of one or more fields. Figure F.8 illus-
trates four dense indexes on the (reduced) Staff table: one based on the salary col-
umn, one based on the branchNo column, one based on the composite index (salary, 
branchNo), and one based on the composite index (branchNo, salary).

F.5.2 Indexed Sequential Files
A sorted data file with a primary index is called an indexed sequential file. This 
structure is a compromise between a purely sequential file and a purely random 
file, in that records can be processed sequentially or individually accessed using a 
search key value that accesses the record via the index. An indexed sequential file 
is a more versatile structure, which normally has:

•	 a primary storage area
•	 a separate index or indexes
•	 an overflow area
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IBM’s Indexed Sequential Access Method (ISAM) uses this structure and is closely 
related to the underlying hardware characteristics. Periodically, these types of file 
need reorganizing to maintain efficiency. Reorganization is not only expensive 
but makes the file unavailable while it takes place. The later development, Virtual 
Sequential Access Method (VSAM), is an improvement on ISAM, in that it is 
hardware-independent. There is no separate designated overflow area, but there 
is space allocated in the data area to allow for expansion. As the file grows and 
shrinks, the process is handled dynamically without the need for periodic reor-
ganization. Figure F.9(a) illustrates a dense index on a sorted file of Staff records. 
However, as the records in the data file are sorted, we can reduce the index to a 
sparse index as shown in Figure F.9(b).

Typically, a large part of a primary index can be stored in main memory and 
processed faster. Access methods, such as the binary search method discussed in 
Section F.3, can be used to further speed up the access. The main disadvantage of 
using a primary index, as with any sorted file, is maintaining the order as we insert 
and delete records. These problems are compounded as we have to maintain the 

Figure F.8  
Indexes	on	
the	Staff	table:	
(a)	(salary,	
branchNo)		
and	salary;		
(b)	(branchNo,	
salary)	and	
branchNo.

Figure F.9 Example	of	dense	and	sparse	indexes:	(a)	dense	index;	(b)	sparse	index.
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sorted order in the data file and in the index file. One method that can be used is 
the maintenance of an overflow area and chained pointers, similar to the technique 
described in Section F.4 for the management of collisions in hash files.

F.5.3 Secondary Indexes
A secondary index is also an ordered file similar to a primary index. However, 
whereas the data file associated with a primary index is sorted on the index key, 
the data file associated with a secondary index may not be sorted on the index-
ing key. Further, the secondary index key need not contain unique values, unlike 
a primary index. For example, we may wish to create a secondary index on the 
branchNo column of the Staff table but from Figure F.1 we can see that the values 
in the branchNo column are not unique. There are several techniques for handling 
nonunique secondary indexes:

•	 Produce a dense secondary index that maps on to all records in the data file, 
thereby allowing duplicate key values to appear in the index.

•	 Allow the secondary index to have an index entry for each distinct key value, but 
allow the block pointers to be multi-valued, with an entry corresponding to each 
duplicate key value in the data file.

•	 Allow the secondary index to have an index entry for each distinct key value. 
However, the block pointer would not point to the data file but to a bucket that 
contains pointers to the corresponding records in the data file.

Secondary indexes improve the performance of queries that use attributes other 
than the primary key. However, the improvement to queries has to be balanced 
against the overhead involved in maintaining the indexes while the database is being 
updated. This is part of physical database design and was discussed in Chapter 18.

F.5.4 Multilevel Indexes
When an index file becomes large and extends over many pages, the search time 
for the required index increases. For example, a binary search requires approxi-
mately log2 p page accesses for an index with p pages. A multilevel index attempts 
to overcome this problem by reducing the search range. It does this by treating the 
index like any other file, splits the index into a number of smaller indexes, and 
maintains an index to the indexes. Figure F.10 shows an example of a two-level 
partial index for the Staff table of Figure F.1. Each page in the data file can store 
two records. For illustration, there are also two index records per page, although 
in practice there would be many index records per page. Each index record stores 

Figure F.10  
Example	of	a	
multilevel	index.
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an access key value and a page address. The stored access key value is the highest 
in the addressed page.

To locate a record with a specified staffNo value, say SG14, we start from the 
second-level index and search the page for the last access key value that is less than 
or equal to SG14, in this case SG37. This record contains an address to the first-level 
index page to continue the search. Repeating the process leads to page 2 in the data 
file, where the record is stored. If a range of staffNo values had been specified, we 
could use the same process to locate the first record in the data file corresponding 
to the lower range value. As the records in the data file are sorted on staffNo, we can 
find the remaining records in the range by reading serially through the data file.

IBM’s ISAM is based on a two-level index structure. Insertion is handled by over-
flow pages, as discussed in Section F.4. In general, an n-level index can be built, 
although three levels are common in practice; a file would have to be very large to 
require more than three levels. In the following section we discuss a particular type 
of multilevel dense index called a B+-tree.

F.5.5 B+-trees
Many DBMSs use a data structure called a tree to hold data or indexes. A tree con-
sists of a hierarchy of nodes. Each node in the tree, except the root node, has one 
parent node and zero or more child nodes. A root node has no parent. A node that 
does not have any children is called a leaf node.

The depth of a tree is the maximum number of levels between the root node 
and a leaf node in the tree. Depth may vary across different paths from root to 
leaf, or depth may be the same from the root node to each leaf node, producing a 
tree called a balanced tree, or B-tree (Bayer and McCreight, 1972; Comer, 1979). 
The degree, or order, of a tree is the maximum number of children allowed per 
parent. Large degrees, in general, create broader, shallower trees. Because access 
time in a tree structure depends more often upon depth than on breadth, it is usu-
ally advantageous to have “bushy,” shallow trees. A binary tree has order 2 in which 
each node has no more than two children. The rules for a B+-tree are as follows:

•	 If the root is not a leaf node, it must have at least two children.
•	 For a tree of order n, each node (except the root and leaf nodes) must have between 

n/2 and n pointers and children. If n/2 is not an integer, the result is rounded up.
•	 For a tree of order n, the number of key values in a leaf node must be between  

(n 2 l)/2 and (n 2 1) pointers and children. If (n 2 l)/2 is not an integer, the 
result is rounded up.

•	 The number of key values contained in a nonleaf node is 1 less than the number 
of pointers.

•	 The tree must always be balanced: that is, every path from the root node to a leaf 
must have the same length.

•	 Leaf nodes are linked in order of key values.

Figure F.11 represents an index on the staffNo field of the staff table in Figure F.1 
as a B+-tree of order 1. Each node is of the form:

• keyValue1 • keyValue2 •
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where • can be blank or represent a pointer to another record. If the search key 
value is less than or equal to key Valuei, the pointer to the left of key Valuei, is used 
to find the next node to be searched; otherwise, the pointer at the end of the node 
is used. For example, to locate SL21, we start from the root node. SL21 is greater 
than SG14, so we follow the pointer to the right, which leads to the second-level 
node containing the key values SG37 and SL21. We follow the pointer to the left of 
SL21, which leads to the leaf node containing the address of record SL21.

In practice, each node in the tree is actually a page, so we can store more than 
three pointers and two key values. If we assume that a page has 4096 bytes, each 
pointer is 4 bytes long and the staffNo field requires 4 bytes of storage, and each 
page has a 4-byte pointer to the next node on the same level, we could store  
(4096 2 4)/(4 1 4) 5 511 index records per page. The B+-tree would be order 
512. The root can store 511 records and can have 512 children. Each child can 
also store 511 records, giving a total of 261,632 records. Each child can also have 
512 children, giving a total of 262,144 children on level 2 of the tree. Each of these 
children can have 511 records giving a total of 133,955,584. This gives a theoretical 
maximum number of index records as:

root: 511

Level	1: 261,632

Level	2: 133,955,584

TOTAL 134,217,727

Thus, we could randomly access one record in the Staff file containing 134,217,727 
records within four disk accesses (in fact, the root would normally be stored in main 
memory, so there would be one fewer disk access). In practice, however, the number 
of records held in each page would be smaller, as not all pages would be full (see 
Figure F.11).

A B+-tree always takes approximately the same time to access any data record, by 
ensuring that the same number of nodes is searched: in other words, by ensuring that 
the tree has a constant depth. Being a dense index, every record is addressed by the 
index so there is no requirement for the data file to be sorted; for example, it could 

Figure F.11 Example	of	B1-tree	index.
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be stored as a heap file. However, balancing can be costly to maintain as the tree con-
tents are updated. Figure F.12 provides a worked example of how a B+-tree would 
be maintained as records are inserted using the order of the records in Figure F.1.

Figure F.12(a) shows the construction of the tree after the insertion of the first 
two records SL21 and SG37. The next record to be inserted is SG14. The node is 
full, so we must split the node by moving SL21 to a new node. In addition, we cre-
ate a parent node consisting of the rightmost key value of the left node, as shown 
in Figure F.12(b). The next record to be inserted is SA9. SA9 should be located to 
the left of SG14, but again the node is full. We split the node by moving SG37 to a 
new node. We also move SG14 to the parent node, as shown in Figure F.12(c). The 
next record to be inserted is SG5. SG5 should be located to the right of SA9, but 

Figure F.12 Insertions	into	a	B+-tree	index:	(a)	after	insertion	of	SL21,	SG37;	(b)	after	insertion	
of	SG14;	(c)	after	insertion	of	SA9;	(d)	after	insertion	of	SG5.
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again the node is full. We split the node by moving SG14 to a new node and add 
SG5 to the parent node. However, the parent node is also full and has to be split. In 
addition, a new parent node has to be created, as shown in Figure F.12(d). Finally, 
record SL41 is added to the right of SL21, as shown in Figure F.11.

F.5.3 Bitmap Indexes
Another type of index that is becoming increasingly popular, particularly in data 
warehousing, is the bitmap index. Bitmap indexes are generally used on attributes 
that have a sparse domain (that is, the domain contains a relatively low number of 
possible values). Rather than storing the actual value of the attribute, the bitmap 
index stores a bit vector for each attribute indicating which tuples contain this par-
ticular domain value. Each bit that is set to 1 in the bitmap corresponds to a row 
identifier. If the number of different domain values is small, then bitmap indexes 
are very space-efficient.

For example, consider the Staff relation shown in Figure F.13(a). Assume that the 
position attribute can take only one of the values present (that is, Manager, Assistant, 
or Supervisor) and similarly assume that the branchNo attribute can take only one 
of the values present (that is, B003, B005, or B007). We could construct bitmap 
indexes to represent these two attributes as shown in Figure F.13(b).

Bitmap indexes provide two important advantages over B+-tree indexes. First, 
they can be more compact than B+-tree indexes, requiring less storage space, and 
they lend themselves to compression techniques. Second, bitmap indexes can pro-
vide significant performance improvements when the query involves multiple pred-
icates each with its own bitmap index. For example, consider the following query:

SELECT staffNo, salary
FROM Staff

WHERE position 5 ‘Supervisor’ AND branchNo 5 ‘B003’;

Figure F.13  
(a)	Staff	relation;	
(b)	bitmap	
indexes	on	
the	position	
and	branchNo	
attributes.
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In this case, we can take the third bit vector for position and perform a bitwise AND 
with the first bit vector for branchNo to obtain a bit vector that has a 1 for every 
Supervisor who works at branch ‘B003’.

F.5.7 Join Indexes
Another type of index that is becoming increasingly popular, also in data warehous-
ing in particular, is the join index. A join index is an index on attributes from two 
or more relations that come from the same domain. For example, consider the 
extended Branch and PropertyForRent relations shown in Figure F.14(a). We could 
create a join index on the nonkey city attribute to generate the index relation shown 
in Figure F.14(b). We have chosen to sort the join index on the branchRowlD, but it 

Figure F.14 (a)	Branch	and	PropertyForRent	relations;	(b)	join	index	on	the	nonkey	city	attribute.
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could have been sorted on any of the three attributes. Sometimes two join indexes 
are created, one as shown and one with the two rowlD attributes reversed.

This type of query could be common in data warehousing applications when 
attempting to find out facts about related pieces of data (in this case, we are 
attempting to find how many properties come from a city that has an existing 
branch). The join index precomputes the join of the Branch and PropertyForRent 
relations based on the city attribute, thereby removing the need to perform the join 
each time the query is run, and improving the performance of the query. This could 
be particularly important if the query has a high frequency. Oracle combines the 
bitmap index and the join index to provide a bitmap join index.

F.6 Clustered and Nonclustered Tables

Some DBMSs, such as Oracle, support clustered and nonclustered tables. The 
choice of whether to use a clustered or nonclustered table depends on the analysis 
of the transactions undertaken previously, but the choice can have an impact on 
performance. In this section we briefly examine both types of structure.

Clusters are groups of one or more tables physically stored together because they 
share common columns and are often used together. With related records being 
physically stored together, disk access time is improved. The related columns of the 
tables in a cluster are called the cluster key. The cluster key is stored only once, so 
clusters store a set of tables more efficiently than if the tables were stored individu-
ally (not clustered).

Figure F.15 illustrates how the Branch and Staff tables would be stored if we clus-
tered the tables based on the column branchNo. When these two tables are clustered, 
each unique branchNo value is stored only once, in the cluster key. To each branchNo 
value are attached the columns from both these tables.

As we now discuss, Oracle supports two types of clusters: indexed clusters and 
hash clusters.

F.6.1 Indexed Clusters
In an indexed cluster, records with the same cluster key are stored together. Oracle 
suggests using indexed clusters when:

Figure F.15  
How	the	Branch	
and	Staff	tables	
would	be	stored	
clustered	on	
branchNo.
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•	 queries retrieve records over a range of cluster key values;
•	 clustered tables may grow unpredictably.

Clusters can improve performance of data retrieval, depending on the data 
distribution and what SQL operations are most often performed on the data. 
In particular, tables that are joined in a query benefit from the use of clusters, 
because the records common to the joined tables are retrieved with the same I/O 
operation.

To create an indexed cluster in Oracle called BranchlndexedCluster with the cluster 
key column branchNo, we could use the following SQL statement:

CREATE CLUSTER BranchlndexedCluster

  (branchNo CHAR(4))
SIZE 512
STORAGE (INITIAL 100K NEXT 50K PCTINCREASE 10);

The SIZE parameter specifies the amount of space (in bytes) to store all records 
with the same cluster key value. The size is optional and, if omitted, Oracle reserves 
one data block for each cluster key value. The INITIAL parameter specifies the size 
(in bytes) of the cluster’s first extent, and the NEXT parameter specifies the size (in 
bytes) of the next extent to be allocated. The PCTINCREASE parameter specifies 
the percentage by which the third and subsequent extents grow over the preceding 
extent (default 50). In our example, we have specified that each subsequent extent 
should be 10% larger than the preceding extent.

F.6.2 Hash Clusters
Hash clusters also cluster table data in a manner similar to index clusters. However, 
a record is stored in a hash cluster based on the result of applying a hash function 
to the record’s cluster key value. All records with the same hash key value are stored 
together on disk. Oracle suggests using hash clusters when:

•	 queries retrieve records based on equality conditions involving all cluster key 
columns (for example, return all records for branch B005);

•	 clustered tables are static or we can determine the maximum number of records 
and the maximum amount of space required by the cluster when it is created.

To create a hash cluster in Oracle called PropertyHashCluster clustered by the column 
propertyNo, we could use the following SQL statement:

CREATE CLUSTER PropertyHashCluster

  (propertyNo VARCHAR2(5))
  HASH IS propertyNo HASHKEYS 300000;

Once the hash cluster has been created, we can create the tables that will be part of 
the structure. For example:

CREATE TABLE PropertyForRent

  (propertyNo VARCHAR2(5) PRIMARY KEY,
...)
  CLUSTER PropertyHashCluster (propertyNo);
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F.7 Guidelines for Selecting File Organizations

As an aid to understanding file organizations and indexes more fully, we provide 
guidelines for selecting a file organization based on the following types of file:

•	 Heap
•	 Hash
•	 Indexed Sequential Access Method (ISAM)
•	 B+-tree
•	 Clusters

Heap (unordered)

The heap file organization is discussed in Appendix F.2. Heap is a good storage 
structure in the following situations:

(1) When data is being bulk-loaded into the relation. For example, to populate a 
relation after it has been created, a batch of tuples may have to be inserted into 
the relation. If heap is chosen as the initial file organization, it may be more 
efficient to restructure the file after the insertions have been completed.

(2) The relation is only a few pages long. In this case, the time to locate any tuple 
is short, even if the entire relation has to be searched serially.

(3) When every tuple in the relation has to be retrieved (in any order) every time the 
relation is accessed. For example, retrieve the addresses of all properties for rent.

(4) When the relation has an additional access structure, such as an index key, heap 
storage can be used to conserve space.

Heap files are inappropriate when only selected tuples of a relation are to be accessed.

Hash

The hash file organization is discussed in Appendix F.4. Hash is a good storage 
structure when tuples are retrieved based on an exact match on the hash field value, 
particularly if the access order is random. For example, if the PropertyForRent rela-
tion is hashed on propertyNo, retrieval of the tuple with propertyNo equal to PG36 is 
efficient. However, hash is not a good storage structure in the following situations:

(1) When tuples are retrieved based on a pattern match of the hash field value. For 
example, retrieve all properties whose property number, propertyNo, begins with 
the characters “PG.”

(2) When tuples are retrieved based on a range of values for the hash field. For 
example, retrieve all properties with a rent in the range 300–500.

(3) When tuples are retrieved based on a field other than the hash field. For exam-
ple, if the Staff relation is hashed on StaffNo, then hashing cannot be used to 
search for a tuple based on the IName attribute. In this case, it would be neces-
sary to perform a linear search to find the tuple, or add IName as a secondary 
index (see Step 4.3).

(4) When tuples are retrieved based on only part of the hash field. For example, if 
the PropertyForRent relation is hashed on rooms and rent, then hashing cannot be 



F.7 Guidelines for Selecting File Organizations | F-21

used to search for a tuple based on the rooms attribute alone. Again, it would be 
necessary to perform a linear search to find the tuple.

(5) When the hash field is frequently updated. When a hash field is updated, the 
DBMS must delete the entire tuple and possibly relocate it to a new address (if 
the hash function results in a new address). Thus, frequent updating of the hash 
field affects performance.

Indexed Sequential Access Method (ISAM)

The indexed sequential file organization is discussed in Appendix F.5.2. ISAM is 
a more versatile storage structure than hash; it supports retrievals based on exact 
key match, pattern matching, range of values, and part key specification. However, 
the ISAM index is static, created when the file is created. Thus, the performance of 
an ISAM file deteriorates as the relation is updated. Updates also cause an ISAM 
file to lose the access key sequence, so that retrievals in order of the access key will 
become slower. These two problems are overcome by the B+-tree file organization. 
However, unlike B+-tree, concurrent access to the index can be easily managed, 
because the index is static.

B+-tree

The B+-tree file organization is discussed in Appendix F.5.5. Again, B+-tree 
is a more versatile storage structure than hashing. It supports retrievals based 
on exact key match, pattern matching, range of values, and part key specifica-
tion. The B+-tree index is dynamic, growing as the relation grows. Thus, unlike 
ISAM, the performance of a B+-tree file does not deteriorate as the relation is 
updated. The B+-tree also maintains the order of the access key even when the 
file is updated, so retrieval of tuples in the order of the access key is more effi-
cient than ISAM. However, if the relation is not frequently updated, the ISAM 
structure may be more efficient, as it has one fewer levels of index than the 
B+-tree, whose leaf nodes contain pointers to the actual tuples rather than the 
tuples themselves.

Clustered tables

Some DBMSs, for example Oracle, support clustered tables (see Appendix F.6). 
The choice of whether to use a clustered or nonclustered table depends on the anal-
ysis of the transactions undertaken previously, but the choice can have an impact 
on performance. Following, we provide guidelines for the use of clustered tables. 
Note in this section, we use the Oracle terminology, which refers to a relation as a 
table with columns and rows.
Clusters are groups of one or more tables physically stored together because they 
share common columns and are often used together. With related rows being 
physically stored together, disk access time is improved. The related columns of 
the tables in a cluster are called the cluster key. The cluster key is stored only 
once, so clusters store a set of tables more efficiently than if the tables were stored 
individually (not clustered). Oracle supports two types of clusters: indexed clusters 
and hash clusters.



F-22 | Appendix F  File Organizations and Indexes

(a) Indexed clusters In an indexed cluster, rows with the same cluster key are 
stored together. Oracle suggests using indexed clusters when:

•	 queries retrieve rows over a range of cluster key values;
•	 clustered tables may grow unpredictably.

The following guidelines may be helpful when deciding whether to cluster tables:

•	 Consider clustering tables that are often accessed in join statements.
•	 Do not cluster tables if they are joined only occasionally or their common column 

values are modified frequently. (Modifying a row’s cluster key value takes longer 
than modifying the value in an unclustered table, because Oracle may have to 
migrate the modified row to another block to maintain the cluster.)

•	 Do not cluster tables if a full search of one of the tables is often required. (A 
full search of a clustered table can take longer than a full search of an unclus-
tered table. Oracle is likely to read more blocks, because the tables are stored 
together.)

•	 Consider clustering tables involved in a one-to-many (1:*) relationship if a row is 
often selected from the parent table and then the corresponding rows from the 
child table. (Child rows are stored in the same data block(s) as the parent row, 
so they are likely to be in memory when selected, requiring Oracle to perform 
less I/O.)

•	 Consider storing a child table alone in a cluster if many child rows are selected 
from the same parent. (This measure improves the performance of queries that 
select child rows of the same parent but does not decrease the performance of a 
full search of the parent table.)

•	 Do not cluster tables if the data from all tables with the same cluster key value 
exceeds more than one or two Oracle blocks. (To access a row in a clustered table, 
Oracle reads all blocks containing rows with that value. If these rows occupy mul-
tiple blocks, accessing a single row could require more reads than accessing the 
same row in an unclustered table.)

(b) Hash clusters Hash clusters also cluster table data in a manner similar to 
index clusters. However, a row is stored in a hash cluster based on the result of 
applying a hash function to the row’s cluster key value. All rows with the same hash 
key value are stored together on disk. Oracle suggests using hash clusters when:

•	 queries retrieve rows based on equality conditions involving all cluster key col-
umns (for example, return all rows for branch B003);

•	 clustered tables are static or the maximum number of rows and the maximum 
amount of space required by the cluster can be determined when it is created.

The following guidelines may be helpful when deciding whether to use hash clusters:

•	 Consider using hash clusters to store tables that are frequently accessed using a 
search clause containing equality conditions with the same column(s). Designate 
these column(s) as the cluster key.

•	 Store a table in a hash cluster if it can be determined how much space is required 
to hold all rows with a given cluster key value, both now and in the future.

•	 Do not use hash clusters if space is scarce and it is not affordable to allocate addi-
tional space for rows to be inserted in the future.
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•	 Do not use a hash cluster to store a constantly growing table if the process of 
occasionally creating a new, larger hash cluster to hold that table is impractical.

•	 Do not store a table in a hash cluster if a search of the entire table is often 
required and a significant amount of space must be allocated to the hash cluster 
in anticipation of the table growing. (Such full searches must read all blocks allo-
cated to the hash cluster, even though some blocks may contain few rows. Storing 
the table alone would reduce the number of blocks read by a full table search.)

•	 Do not store a table in a hash cluster if the cluster key values are frequently 
 modified.

•	 Storing a single table in a hash cluster can be useful, regardless of whether the 
table is often joined with other tables, provided that hashing is appropriate for 
the table based on the previous guidelines.

Appendix Summary

•	 A	file organization	is	the	physical	arrangement	of	data	in	a	file	into	records	and	pages	of	secondary	storage.	
An	access method	is	the	steps	involved	in	storing	and	retrieving	records	from	a	file.

•	 Heap	(unordered)	files	store	records	in	the	same	order	they	are	inserted.	Heap	files	are	good	for	inserting	a	
large	number	of	records	into	the	file.	They	are	inappropriate	when	only	selected	records	are	to	be	retrieved.

•	 Sequential	(ordered)	files	store	records	sorted	on	the	values	of	one	or	more	fields	(the	ordering	fields).	
Inserting	and	deleting	records	in	a	sorted	file	is	problematic,	because	the	order	of	records	has	to	be	maintained.	
As	a	result,	ordered	files	are	rarely	used	for	database	storage	unless	a	primary	index	is	added	to	the	file.

•	 Hash	files	are	good	when	retrieval	is	based	on	an	exact	key	match.	They	are	not	good	when	retrieval	is	based	
on	pattern	matching,	range	of	values,	part	keys,	or	a	column	other	than	the	hash	field.

•	 An	index	is	a	data	structure	that	allows	the	DBMS	to	locate	particular	records	in	a	file	more	quickly	and	thereby	
speed	response	to	user	queries.	There	are	three	main	types	of	index:	a	primary index,	clustering index,	and	
a	secondary index	(an	index	that	is	defined	on	a	non-ordering	field	of	the	data	file).

•	 Secondary indexes	provide	a	mechanism	for	specifying	an	additional	key	for	a	base	relation	that	can	be	used	
to	retrieve	data	more	efficiently.	However,	there	is	an	overhead	involved	in	the	maintenance	and	use	of	second-
ary	indexes	that	has	to	be	balanced	against	the	performance	improvement	gained	when	retrieving	data.

•	 ISAM	is	more	versatile	than	hashing,	supporting	retrievals	based	on	exact	key	match,	pattern	matching,	range	of	
values,	and	part	key	specification.	However,	the	ISAM	index	is	static,	so	performance	deteriorates	as	the	table	is	
updated.	Updates	also	cause	the	ISAM	file	to	lose	the	access	key	sequence,	so	retrievals	in	order	of	the	access	
key	become	slower.

•	 These	two	problems	are	overcome	by	the	B+-tree	file	organization,	which	has	a	dynamic	index.	However,	unlike	
B+-tree,	because	the	ISAM	index	is	static,	concurrent	access	to	the	index	can	be	easily	managed.	If	the	relation	is	
not	frequently	updated	or	not	very	large	or	likely	to	be,	the	ISAM	structure	may	be	more	efficient	as	it	has	one	
less	level	of	index	than	the	B+-tree,	whose	leaf	nodes	contain	record	pointers.

•	 A	bitmap index	stores	a	bit vector	for	each	attribute	indicating	which	tuples	contain	this	particular	domain	
value.	Each	bit	that	is	set	to	1	in	the	bitmap	corresponds	to	a	row	identifier.	If	the	number	of	different	domain	
values	is	small,	then	bitmap	indexes	are	very	space	efficient.
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•	 A	join index	is	an	index	on	attributes	from	two	or	more	relations	that	come	from	the	same	domain.	The	join	
index	precomputes	the	join	of	the	two	relations	based	on	the		specified	attribute,	thereby	removing	the	need	
to	perform	the	join	each	time	the	query	is	run,	and	improving	the	performance	of	the	query.	This	could	be	
particularly	important	if	the	query	has	a	high	frequency.

•	 Clusters	are	groups	of	one	or	more	tables	physically	stored	together	because	they	share	common	columns	
and	are	often	used	together.	With	related	records	being	physically	stored	together,	disk	access	time	is	improved.	
The	related	columns	of	the	tables	in	a	cluster	are	called	the	cluster key.	The	cluster	key	is	stored	only	once,	
and	so	clusters	store	a	set	of	tables	more	efficiently	than	if	the	tables	were	stored	individually	(not		clustered).	
Oracle	supports	two	types	of	clusters:	indexed	clusters	and	hash	clusters.


