COSC 341/342 Programming Languages WINTER 2015
Python Project Part 1: Build a Symbol Table

Distributed 22 January 2015 Due: 5 February 2015

Assignment:

Write a Python program that will build a symbol table for an arbitrary, but
correct, LC3 assembler language program.

The symbol table data structure is up to you.

You must provide functions to insert and to retrieve data from the symbol
table. You must provide a function to pretty-print the symbol table (i.e., nicely
formatted).

You are allowed to import any libraries that are available on the Web - cite
the URL plus whatever is necessary for a complete citation.

Background information
The LC3 instruction set architecture is described in Appendix A of this link:
http://highered.mheducation.com/sites /0072467509 /student view0/appendices

ab c d_ehtml

A description of the LC3 assembler language (if you don’t have the COSC 221
text) can be found at this link:
https://classes.soe.ucsc.edu/cmpe012/Fall06 /notes/08_LC3_Assembly.pdf

Slides #21 and 22 describe the process of building the symbol table.

There are 21® memory locations in an LC3 machine. Each instruction occupies 2
bytes (aka, one word). The LC3 machine is word-addressable. Thus, memory
address 0x3000 contains 2 bytes (one instruction, or one integer, or one character).
The next memory address 0x3001 contains 2 bytes. And so on.

Labels (symbols, identifiers) will reference a memory location. Labels are used to
specify targets of a jump instruction (BR, JSR), a load instruction (LD, LDI, LEA), a
store instruction (ST, STI).

Alabel starts in the first position of a line of code. A label can be from 1 - 20
(alphanumeric, beginning with alphabetic) characters. There are two kinds of
labels: (1) a target of a jump, (2) location of a variable for load or store.

A variable can be either (1) an integer, stored as 16 bit 2s complement, or (2)
character, also 16 bits, though only the bottom 8 bits are used for ASCII encoding.

The following assembler directives important for computing the correct addresses
for the symbols: .ORIG, .FILL, .BLKW, .STRINGZ, .END.
.FILL specifies the content of two bytes (one memory location)

.BLKW specifies the amount of space reserved (e.g., for an array). Each location
specified will occupy two bytes.

.STRINGZ specifies a string of characters. This will reserve two bytes per character,
plus one more byte for the string terminator 0x0000

Turn in:

- Hardcopy of source code that you wrote.

- Citation of any imported libraries,

- Sample run on multiply program (see below), ending with a listing of the symbol
table.

- Sample run on program to be supplied on 2/3/2015 (it will be a long program),
ending with listing of the symbol table.

Grade based on:
(1) Satisfies specs — runs on multiply program 30%
(2) Satisfies specs - runs on test program 50%
(3) Readability

(commenting, variable names, white space, design of functions, ...) 20%

.ORIG x3000

x3000 LD R2, Zero
x3001 LD RO, MO
x3002 LD R1, Ml

; begin multiply
x3003 Loop BRz Done

x3004 ADD R2, R2, RO
x3005 ADD R1, R1, #-1
x3006 BR Loop

; end multiply
x3007 Done ST R2, Result
x3008 HALT

x3009 Result .FILL x0000

x300A Zero .FILL x0000

x300B MO .FILL x0007

x300C M1 .FILL x0003
.END

PostScript:

It looks like there is a partial interpreter for LC3 in Python here:
http://cs.brynmawr.edu/cs240/1c3.py

It won’t be useful for this assignment, because ADD, ADDI, AND, ANDI, NOT
instructions do not use symbols.

This write up on how to write an assembly language program from a high-level
program may be helpful in the future - but not, I think for this project:
http://cs.brynmawr.edu/cs240/highlevelprogramming.html

