
COSC	341	 Programming	Languages	 Project	#1	 	
	
Precis:		Write	a	program	that	reads	a	plain	text	source	code	file,	inserting	identifier	
names	into	a	symbol	table,	along	with	the	line	#,	the	identifier’s	type	and	nesting	
level.	
	
More	detailed	description:	The	source	file	program	will	contain	identifier	names,	
three	keywords	(‘proc’,	‘int’,	‘real’),	‘{‘,	‘}’,	‘;’	,	‘=’,	and	constant	integers.	
	
The	source	file	will	be	properly	nested	with	‘{‘	and	‘}’.	
	
The	nesting	level	starts	at	level	0.	
When	‘{‘	is	encountered,	the	nesting	level	increments	by	1.	
When	‘}’	is	encountered,	the	nesting	level	decrements	by	1.	
	
As	each	identifier	declaration	is	encountered,	the	identifier	name,	its	nesting	level,	
its	type,	and	the	line#	is	entered	into	a	symbol	table.	
	
Usage	of	the	identifier	is	not	entered	into	the	symbol	table.	
***	For	extra	credit,	access	the	symbol	table	and	add	the	line	number(s)	where	the	
identifier	is	used	***	
	
Input:		A	plain	text	source	file	(char	stream).	The	source	file	will	NOT	contain	line	
numbers.	The	line	numbers	are	given	below	so	that	you	can	see	what	is	entered	to	
the	symbol	table.	
	
The	input	file	must	be	supplied	as	a	run-time	argument	or	as	user-supplied	char	
string	to	a	prompt	from	the	program.	The	input	file	may	not	be	hard-coded	in	your	
program.	
	
Output:		Symbol	table	listing.	
	
Example:	source	file	

1 proc main {
2 int x;
3 real y;
4
5 proc t1 {
6 int x;
7
8 proc t2 {
9 real x;
10 int y;
11 int z;
12 x = y + z;

13 }
14 x = 3;
15 }
16 x = 5;
17 }

	
Example:	Symbol	table	output	
	
NAME	TYPE	 LEVEL	L#	
main proc 0 1
x int 1 2
y real 1 3
t1 proc 1 5
x int 2 6
t2 proc 2 8
x real 3 9
y int 3 10
z int 3 11
	
	
When	a	variable	is	declared,	the	type	(proc, int, real)	will	precede	the	name.	
Permitted:	
int x
proc t1223
	
Because	‘,’	is	not	permitted	in	the	source	file,	each	identifier	will	be	immediately	
preceded	by	its	type.	
	
End	of	line	character	does	not	have	semantic	significance.	So	

int x; real counter; int tester;
is	valid	
	
	
Language	of	implementation:	Your	choice.	If	you	use	perl,	your	code	must	be	easily	
readable.	
	
Grammar	for	source	file	will	follow.	
	
	
Inputs:		You	must	put	each	of	these	inputs	into	a	separate	file.	
	
Input	#1	
	
proc g {
 int x;

 int y;
 {
 real x;
 real z;
 }
}
	
	
Input	#	2	
	
proc f1 {
 int x;
 {
 int y;
 {
 int z;
 x = z + 25;
 }
 }

 proc f2 {
 real y;
 x = y;
 }

 real z;
 z = 3;
 x = z;
}

	
Turn	in:	
Hard	copy	of	source	code	
Hardcopy	of	Example	file,	Input	#1	file,	Input	#2	file.	
Screen	shot	of	program	working	on	Example,	Input	#1,	Input	#2	
Code	walk-through.	
	
Extra-credit	
	
For	Example	code,	the	symbol	table	output	should	be:	
	
NAME	TYPE	 LEVEL	L#	
main proc 0 1#
x int 1 2# 16
y real 1 3#
t1 proc 1 5#

x int 2 6# 14
t2 proc 2 8#
x real 3 9# 12
y int 3 10# 12
z int 3 11# 12
	
Note,	the	line	where	the	variable	is	declared	is	followed	with	‘#’.	Lines	where	
variables	are	used	do	not	have	any	special	symbol.	

