
	
COSC	311	 WINTER	2016			 Programming	Project	3				
	
Is	postfix	traversal	of	a	binary	search	tree	linear,	n	log	n		or	quadratic?			
	
Distributed	(official):	3/31/2016	 	 Due:	4/14/2016	
	
Project	Statement:		Experimentally	gauge	the	run-time	complexity	of	postfix	
traversal	of	a	binary	search	tree	(BST).	
	
Problem	approach:	Obtain	timing	results	from	postfix	traversals	of	binary	search	
trees.		Fit	three	different	curves	to	the	data	points:		
	 An	O(n)	curve:	f(n) = an + b,			
	 An	O(n	log	n)	curve:	g(n) =	a*n*log(n) + bn + c,		
	 And	an	O(n2)	curve:	h(n) = an2 + b n + c.			
	
Determine	the	errors	between	fitted	curve	and	data.		Use	the	errors	to	support	an	
argument	as	to	the	best	run-time	complexity	for	postfix	BST	traversal.	
	
More	detail:	
Obtain	enough	data	(BST	size,	time)	pairs	to	make	a	convincing	conclusion.		
	
In	order	to	make	a	convincing	argument,	you	need	to	do	the	following:		 	
	 Ensure	sufficient	variety	of	data	set	sizes,		 	
	 Ensure	sufficient	variety	of	data,	
	 Ensure	the	BST	are	representative	(sufficiently	randomized)		 	
	 Ensure	your	code	is	correct.		 	
	 Take	timing	information	on	what	you	actually	need	to	measure,	
	 Compare	the	errors	of	the	fitted	curves	against	the	actual	data.		 		
	
Data	set	size:	
	 Two	data	points	will	suffice	to	perfectly	fit	a	straight	line.	
	 Three	data	points	will	suffice	to	perfectly	fit	a	parabola.	
Therefore,	you	will	need	significantly	more	than	four	data	points	to	measure.		At	the	
minimum,	you	should	obtain	six	data	points.		
	
Range	of	data	set	size:	
	 The	maximum	value	of	n	(tree	size)	values	should	be	large	enough	to	
successfully	acquire	timing	results	within	a	reasonable	amount	of	elapsed	wall-time	
(say,	less	than	10	minutes).	Also,	the	size	of	the	tree	and	execution	of	the	algorithm	
must	fit	within	the	physical	resources	(i.e.,	memory	space)	of	your	system.	
	 Also,	the	range	of	n	must	be	such	that	meaningful	measurements	are	
obtained	at	all	data	point	values.	The	execution	time	must	be	measurable	(i.e.,	not	
too	small).	

	 The	range	of	the	data	must	be	wide	enough	to	allow	for		the	fitted	curves	to	
show	significant	errors.	
	
Data	must	be	reasonable	
	 To	obtain	average	case	behavior,	you	need	an	“average”	BST.	The	only	way	
to	ensure	that	you	have	an	average	BST	is	to	generate	multiple	BSTs	of	a	given	size	
n.		Take	the	timing	information	for	each	BST	of	given	size	n,	then	average	the	timing	
results	for	that	size	n.	
	
Ensure	your	code	is	correct	
	 Demonstrate	your	code	is	correct	by	producing	output	of	a	postfix	traversal	
for	a	small	number	of	small	n	trees	(e.g.,	n	=	10)	
	
Plotting:	
	 Plot	the	data	(independent	variable	is	n	(n	is	size	of	BST),	dependent	
variable	is	time)	with	the	fitted	curves.		Show	the	data	points	as	visible	marks,	and	
the	fitted	curves	overlaid	on	top.		
	 The	plot	must	have	clearly	labeled	axes,	and	there	must	be	a	legend	giving	
line	shape	with	corresponding	fitted	curve.	
			 You	will	need	another	chart,	a	bar	chart,	that	compares	the	errors	of	the	
different	fits	(three	bars,	one	for	each	fitted	curve).		
	
Conclusion:	
	 Give	a	one	paragraph	summary	giving	your	conclusion	with	supporting	
argument	from	the	data,	the	plot(s)	and	the	error	chart.	
	
Turn	in:	

Hardcopy	of	code	
Example	run:	postfix	traversal	of	size	10	BST	(timing	information	not	

required)	
Plots	and	charts	
Conclusion	

	
Grade	based	on:	
Correctness	of	code,	satisfying	spec	 85%	
Readability,	elegance,	documentation	 15%	
	
How	to	get	timing	information?	
You	may	use	System.currentTimeMillis()	or	System.nanoTime().

Note,	there	are	other	ways	of	measuring	running	time.		Any	of	those	are	fine	–	some	
are	better	than	using	the	Java	System	API	
	
Measure	the	correct	thing.	Do	not	measure	anything	unrelated	to	postfix	traversal.	

