
COSC	311	 Project	#2	 Priority	Queue:	Simulate	Job	Scheduling	
	
Distributed:	3/8/3016	 	 Due:		3/29/2016	
	
(from	Carrano)	
Write	a	program	to	simulate	job	scheduling	in	an	operating	system.	Jobs	are	generated	at	random	times.	Each	
job	is	given	a	unique	id,	a	random	priority	from	1	to	4	–	where	1	is	the	highest	priority.	Every	job	will	require	
a	fixed	amount	of	time	(10	units)	to	complete	its	execution.	
	
Jobs	do	not	begin	execution	and	run	to	completion,	but	instead	share	a	single	processor.	The	operating	
system	executes	a	job	for	a	fixed	unit	of	time	called	a	time	slice	(or	a	quantum).	At	the	end	of	the	time	slice,	
the	current	job’s	execution	is	suspended.	The	job	is	then	placed	on	a	priority	queue,	where	it	waits	for	its	next	
share	of	processor	time.	The	job	having	the	highest	priority	is	then	removed	from	the	priority	queue	and	
executed	for	a	time	slice.	
	
To	simplify	this	project,	generate	6	jobs	(all	the	jobs	used	in	the	simulation)	during	initialization	phase.		All	
are	‘ready’	to	execute	immediately.		All	are	placed	on	the	priority	queue.	Simulation	time	starts	at	time = 0,	
at	which	point	the	highest	priority	job	is	given	the	CPU.	
	
When	a	job	needs	to	be	assigned	to	the	CPU,	take	the	highest	priority	job	and	let	it	‘run’	for	a	time	slice.	After	
the	job	finishes	its	quantum,	put	it	back	on	the	priority	queue	if	more	time	is	required	by	the	job.		Obviously	
you	will	have	to	decrement	the	job’s	time_to_completion	field.	Repeat.	
	
When	a	job	completes,	do	not	place	it	back	on	the	priority	queue.	
	
The	length	of	a	time	slice	is	3	–	thus	each	job	will	require	4	context	switches.		A	job	may	(will)	complete	
during	its	last	time	slice.	As	soon	as	the	job	terminates,	start	a	new	quantum	with	the	highest	priority	job.	
	
A	run	of	this	program	should	output	a	title	line	with	current	date	and	time.	For	example:	

Job Scheduling Simulation Tue Mar 08 2016 09:21:31 GMT-0500
	
At	each	context	switch	(i.e.,	give	CPU	to	job),	output	the	following:	
	
Time Job_id priority time_to_completion.
	
“Time”	refers	to	simulated	clock	time.		
	
We	expect	there	to	be	6	jobs	*	4	context	switch/job	=	24	lines	tracing	the	simulation.	
	
Turn	in:	
	 Hard	copy	of	source	code,	with	javadoc	comments,	
	 UML	(showing	classes,	methods,	data)	and	relationships	between	classes,	
	 Screen	shot	of	executing	code.	
	
Grade	based	on:	
	 Meets	specs	 	 	 75%	
	 	 (includes	UML,	screen	shot,	…)	
	 Elegance,	readability	 	 25%	
	 	 (includes	javadoc,	use	of	white	space,	names,	good	design,	…)	

