

COSC	311		PROGRAMMING	PROJECT	#1						Random	access	File	I/O	to	implement	hashing.	
	
Distributed:	10/10/2017	 	 Due:	10/30/2017	
	
You	will	implement	open	addressing	hashing	using	linear	probing	on	the	hard	disk	(in	a	
file).	
	
Record	format	
Each	element	of	the	hash	table	contains	a	record.	Each	record	is	formatted	as	follows:	

10	chars	(name	–	a	String	or	a	char[])	
4	bytes	(id	–	int;	id	is	autoincrement,	start	at	1)	
1	byte	(meta	--	data	information	byte:	dirty	bit,	empty	bit)	
The	data	are	laid	out	on	the	record	as	shown	above.	

	
Note!	You	may	use	an	object	to	store	the	data,	but	the	name	field	must	occupy	10	chars.	
	
Note!!	It	does	not	matter	what	the	size	of	an	input	String	is.	You	must	pad	or	truncate	to	get	
10	chars.	
	
Thus,	a	record	for	a	Person	contains:	
	 String	 name;	
	 int	 id;	
	
“Meta-data”	
The	meaning	of	the	byte	that	stores	the	dirty	bit	is:	
0b0000	 there	is	no	data	present	
0b0001	 dirty	—	the	data	is	invalid.	I.e.,	this	is	a	tombstone	
0b0100		 clean	data	—	there	is	data	present	and	the	data	is	valid	
0b0101	 dirty	data	–	there	is	data	present,	but	the	data	is	dirty.	
Note!	Only	the	bottom	4	bits	of	the	byte	is	shown.	The	top	four	bits	are,	obviously,	all	0.	
	
The	meta-data	is	information	useful	in	the	data	structure	(the	hash	table).	It	is	not	derived	
from	any	information	about	the	Person.	
	
The	basic	hash	table	
The	hash	table	is	a	random	access	file	comprising	records.		You	must	create	the	initial	hash	
table	in	the	file	by	setting	up	16	records:		The	hash	table	is	initially	empty	and	is	size	16.	
	
Use	Java	Object’s	hash()	function	for	the	hash	function.	You	will	hash	the	String	data	to	
obtain	the	hash	value.	The	record	will	be	inserted	to	the	file	as	given	by	the	hash	value.		
	
Each	record	stored	in	the	hash	table	will	include	the	data	associated	with	a	Person,	PLUS	
the	meta	data	(one	byte).	
	
Operations	on	the	hash	table	

You	will	insert	and	delete	several	records.		When	the	hash	table	reaches	50%	full,	you	must	
	 pause	reading	input	and	applying	operations,		
	 create	a	new	hash	table	doubled	in	size,		
	 rehash	the	old	data,		
	 delete	the	old	table.	
After	every	insertion,	check	to	see	if	your	table	has	exceeded	capacity	(50%).		Only	valid	
data	counts	toward	load	capacity.	
	
Note:	you	may	determine	the	amount	of	valid	data	in	the	table	by	either:	
	 1.	Keeping	track	of	the	number	of	valid	data	elements	in	an	int	located	at	offset	0	in	
the	file,	or	
	 2.	Stepping	through	the	table	and	counting	the	number	of	valid	data	elements.	
	
Deletions	will	not	cause	contraction	of	the	hash	table,	not	even	if	the	table	is	empty.	
	
The	operations	are	contained	in	a	char	stream	file	named	input.dat.		There	are	three	
kinds	of	operations	in	that	file:	

input	(String)	
delete	(String)	
printTable()	

	
Input	operation	
input(String str)

(1)	Read	the	String	str	from	charstream	input.data
(2)	Generated	the	id.	The	new	id	is	autoincremented	(starting	at	0).	
(3)	Output	“Input	str - id”		to	the	console		(obviously	using	the	value	of	str	and	

id	in	the	output	statement)	
(4)	Modify	the	String	str	to	make	it	20	bytes	by	truncating	or	padding	as	necessary	

(see	the	format	method	in	the	String	classNote,	the	final	byte	is	0x04	(data	present,	not	
dirty).	

(5)	hash	the	name	field	to	find	the	hash	value.	Then	modify	the	hash	value	to	find	
the	seek	location.	
(6)	Seek	to	the	computed	location.	
(7)	Read	the	entire	record	at	the	current	seek	position	
(8)	If	the	record	location	is	marked	‘dirty’	0x01	or	0x05,	or	marked	‘empty’	0x00,		

then	insert	the	data	(name,	id,	and	meta = b0100)	
	 	 else	repeat	linear	probe	until	data	can	be	inserted.	

(9)	After	the	record	been	inserted,	check	the	table	capacity.	
	

If	the	table	is	over	capacity:	
	 Output	“Table	size	n	is	overcapacity.	Rehashing”		(obviously,	give	the	current	

value	of	n)	
	 	 Rehash	table	
	 	 Delete	any	old	file	that	will	no	longer	be	used.	
	

Delete	operation	
delete (String str)

(1)	Read	the	String	str	
(2)	Output	“Delete	str”	to	the	console.		Give	the	current	value	of	str	in	the	output	
(3)	Hash	the	data,	compute	the	seek	location	
(4)	Use	linear	probe	by	reading	records,	testing	for	value	match	or	testing	for	dirty		

bit	until	either:			data	is	found		
or:									data	is	not	present	(probed	to	empty	record).		
(5)	Read	the	entire	record	in.	Output	“Deleted	str	id”.	Give	values	of	str	and	id.	
(6)	Modify	the	meta	data	on	the	hash	table	to	reflect	dirty	data	(b0101)	

	
PrintTable	operation	

(1)	Determine	the	size	of	the	file	in	bytes	and	in	number	or	records.	Output	the	
size(s)	of	the	file.	

(2)	Position	the	file	cursor	at	the	start	of	the	hash	table.	
(3)	On	a	separate	line,	output	the	String	data,	followed	by	id,	followed	by	the	data	

information	byte,	in	the	order	as	recorded	in	the	file.	The	data	information	byte	must	be	
given	as	a	bit	string.		If	the	record	is	empty,	output	blanks	for	the	String	data,	followed	by	
blanks	for	id,	followed	by	the	data	information	byte.	

(4)	Repeat	(3)	for	the	entire	file.	
	
Testing	the	data	information	byte:	
Suppose	you	have	put	the	data	information	byte	into	the	unsigned	byte	variable	named	
info.	

n The	data	is	dirty:		info && 0x01	
n The	data	is	present	and	clean:		!dirty(info) && (info && 0x04)	
n The	record	is	empty:	info == 0x00	

	
Setting	the	data	information	byte	
Suppose	you	have	put	the	data	information	byte	into	the	unsigned	byte	variable	named	
info.	

- Set	the	dirty	bit:		 	 info = info || 0x01	
- Clear	the	dirty	bit:	 	 info = info && 0xFE	
- Set	the	data	present	bit:	 info = info || 0x04	
- Clear	the	data	present	bit:	 info = info && 0xFB	

	
	
Random	access	file	I/O	
See	the	description	of	the	Java	class:	RandomAccessFile:	
http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html	
	
A	super	elementary	example,	with	annoying	advertisement,	is	given	here:	
https://www.java-tips.org/java-se-tips-100019/18-java-io/1998-how-to-use-random-
access-file.html	
	

Another	example	is	given	here:	https://examples.javacodegeeks.com/core-
java/io/randomaccessfile/java-randomaccessfile-example/	
	
See	course	home	page	for	links	to	another	elementary	example	(including	
truncating/padding	String	data).	
	
Turn	in:	
	 Hard	copy	of	code	
	 UML	showing	classes	and	relationships.	

Sample	run	on	input.dat	data	
	
	
Grade:	
	 Program	works	as	specified	
	 Reasonable	documentation	of	the	code	
	 UML	
	 Style	
	 Elegance	

