
Chapter 5 © 2003 by Addison-Wesley, Inc. 1

JavaScript Execution Environment

- The JavaScript Window object represents the
window in which the browser displays documents

- The Window object provides the largest enclosing
referencing environment for scripts

- Its properties are visible to all scripts in the
document (they are the globals)

- Other Window properties:

- document - a reference to the Document object
that the window displays

- frames - an array of references to the frames of
the document

- forms - an array of references to the forms of the
document

- Each Form object has an elements array, which
has references to the form’s elements

- Form elements are usually referenced by
name, but this is a problem for radio buttons

Chapter 5 © 2003 by Addison-Wesley, Inc. 2

The Document Object Model
-Under development by w3c since the mid-90s

- DOM 0 is supported by all JavaScript browsers

- DOM 2 is the latest approved standard

- Nearly completely supported by NS6
- IE6’s support is lacking some important things

- The DOM is an abstract model that defines the
interface between HTML documents and
application programs

- It is an OO model - document elements are objects

- A language that supports the DOM must have a
binding to the DOM constructs

- In the JavaScript binding, HTML elements are
represented as objects and element attributes are
represented as properties

e.g., <input type = "text" name = "address">

would be represented as an object with two
properties, type and name, with the values
"text" and "address"

See Figure 5.1

Chapter 5 © 2003 by Addison-Wesley, Inc. 3

DOM structure of HTML
document

Chapter 5 © 2003 by Addison-Wesley, Inc. 4

Element Access in JavaScript
- Example (a document with just one form):

<form action = "">
<input type = "button" name = "pushMe">

</form>

1. DOM address

document.forms[0].element[0]

- Problem: A change in the document could
invalidate this address

2. Element names – requires the element and all
of its ancestors (except body) to have name
attributes

- Example:

<form name = "myForm" action = "">
<input type = "button" name = "pushMe">

</form>

document.myForm.pushMe

- Problem: Strictly speaking, standard does
not allow form elements to have names. Still, it is
standard practice in many pages.

Chapter 5 © 2003 by Addison-Wesley, Inc. 5

Element Access in JavaScript
(continued)

3. getElementById Method

- Example:

<form action = "">
<input type = "button" id = "pushMe">

</form>

document.getElementById("pushMe")

To work, the Id must be unique in the document.

Events and Event Handling

- We look at the DOM 0 event model first

- In event-driven programming, code is executed as
a result of a user or browser action

- An event is a notification that something specific
has occurred, either with the browser or an action
of the browser user

- An event handler is a script that is implicitly
executed in response to the appearance of an event

Chapter 5 © 2003 by Addison-Wesley, Inc. 6

Events and Event Handling (continued)

- Because events are JavaScript objects, their names
are case sensitive - all are in lowercase only (so

click is an event, but Click is not)
- The process of connecting an event handler to an
event is called registration

- Don’t use document.write in an event handler,
because the output may go on top of the displayed
document
- Events (only some are listed here)

Event Tag Attribute
abort onAbort
blur onBlur
change onChange
click onClick
error onError
focus onFocus
load onLoad
mouseout onMouseOut
mouseover onMouseOver
reset onReset
resize onResize
select onSelect
submit onSubmit
unload onUnload

Chapter 5 © 2003 by Addison-Wesley, Inc. 7

Events and Event Handling (continued)

- The same attribute can appear in several different
tags

e.g., The onClick attribute can be in <a> and
<input>

- A text element gets focus in three ways:

1. When the user puts the mouse cursor over it
and presses the left button

2. When the user tabs to the element

3. By executing the focus method

See: Table 5.2

Chapter 5 © 2003 by Addison-Wesley, Inc. 8

Tags’ Events
• The events for each HTML

tag are as follows:
• <A>

– click (onClick)
– mouseOver (onMouseOver)
– mouseOut (onMouseOut)

• <AREA>
– mouseOver (onMouseOver)
– mouseOut (onMouseOut)

• <BODY>
– blur (onBlur)
– error (onError)
– focus (onFocus)
– load (onLoad)
– unload (onUnload)

• <FORM>
– submit (onSubmit)
– reset (onReset

• <FRAME>
– blur (onBlur)
– focus (onFocus)

• <FRAMESET>
– blur (onBlur)
– error (onError)
– focus (onFocus)
– load (onLoad)
– unload (onUnload)

•
– abort (onAbort)
– error (onError)
– load (onLoad)

• <INPUT TYPE = "button">
– click (onClick)

• <INPUT TYPE =
"checkbox">
– click (onClick)

• <INPUT TYPE = "reset">
– click (onClick)

• <INPUT TYPE = "submit">
– click (onClick)

• <INPUT TYPE = "text">
– blur (onBlur)
– focus (onFocus)
– change (onChange)
– select (onSelect)

• <SELECT>
– blur (onBlur)
– focus (onFocus)
– change (onChange)

• <TEXTAREA>
– blur (onBlur)
– focus (onFocus)
– change (onChange)
– select (onSelect)

• SEE web page

Chapter 5 © 2003 by Addison-Wesley, Inc. 9

Specifying event handlers
• 1. By assigning the event handler

script to an event tag attribute
onClick = "alert('Mouse click!');"
onClick = "myHandler(); "
onClick = "myHandler(42);"

• 2. By assigning the appropriate event
property of the DOM object
corresponding to the tag to the handler
function

var dom=document.getElementById(“myButton”);
dom.onclick = doSomething();

– A problem with this technique is that no
parameters can be passed.

Chapter 5 © 2003 by Addison-Wesley, Inc. 10

Events and Event Handling (continued)

- Example: the load event - triggered when the
loading of a document is completed

<!-- load.html
An example to illustrate the load events
-->

<html>
<head>
<title> The onLoad event handler>
</title>

<script type = "text/javascript">
<!--
// The onload event handler

function load_greeting () {
alert("You are visiting the home page of \n"

+ "Pete's Pickled Peppers \n"
+ "WELCOME!!!");

}
// -->
</script>
</head>

<body onload="load_greeting();">
</body>
</html>
See load.html

Chapter 5 © 2003 by Addison-Wesley, Inc. 11

Events and Event Handling (continued)

- Radio buttons

<input type = "radio" name = "button_group"
value = "blue" onClick = "handler()">

- The checked property of a radio button object is
true if the button is pressed

- Can’t use the element’s name to identify it,
because all buttons in the group have the same
name

- Must use the DOM address of the element, e.g.,

var radioElement = document.getElementsById(
“myForm”).elements;

- Now we have the DOM address of the array of
elements of the form

for (var index = 0;
index < radioElement.length; index++) {

if (radioElement[index].checked) {
element = radioElement[index].value;
break;

}
}

See radio_click.html & Figures 5.3 & 5.4

Chapter 5 © 2003 by Addison-Wesley, Inc. 12

Another way of handling
radio buttons

• Alternatively, we can make use of the
parameters we can pass to the
handlers to simplify our code:

• See radio_click_params.html

Chapter 5 © 2003 by Addison-Wesley, Inc. 13

Events and Event Handling (continued)

- Checking Form Input

- A good use of JavaScript, because it finds errors
in form input before it is sent to the server for
processing

Offloads processing of form errors to client

- Things that must be done:

1. Detect the error and produce an alert
message

2. Put the element in focus (the focus function)
3. Select the element (the select function).

Chapter 5 © 2003 by Addison-Wesley, Inc. 14

Events and Event Handling
(continued)

- The focus function puts the element in focus, which
puts the cursor in the element

document.getElementById("phone").focus();

- The select function highlights the entered (but
faulty) value so that when the user enters a new
value, the old one is automatically erased first.

- Neither select nor focus work with NS 6.2, but do
work with 7.0 and above

- If event handler returns false, the browser will not
perform default actions of that event. This is
especially important for the submit event: the
handler should usually check for proper form
completion, and return false if all is not well.
Consequently, the browser will not submit the
form data to the server.

Chapter 5 © 2003 by Addison-Wesley, Inc. 15

Example – comparing
passwords

• If a password will be used later, the user is
asked to type it in twice

• The program must verify that the second
typing of the password is the same as the
first

• The form has 4 elements: 2 password input
boxes and a Reset and Submit button

• The event handler is triggered by the Submit
button

• Handler actions:
1. If no password has been typed in the first

box, focus on that box and return false
2. If the two passwords are not the same, focus and

select the first box and return false, else return true

• --> See: pswd_chk.html & Figures 5.5 & 5.6

Chapter 5 © 2003 by Addison-Wesley, Inc. 16

- Another Example – Checking the format of a name
and phone number

- The event handler will be triggered by the change
event of the text boxes for the name and phone
number

- If an error is found in either, an alert message is
produced and both focus and select are called on
the text box element

- Another event handler is used to produce a
thank you alert message when the input is ok

SHOW validator.html & Figures 5.7 & 5.8

Events and Event
Handling

Chapter 5 © 2003 by Addison-Wesley, Inc. 17

The DOM 2 Event Model
• Does not include all DOM 0 features,

but they are still supported
• Much more powerful than the DOM 0

model. Analogous to Java’s event-
handling

• Microsoft does not support it, yet
• Event propagation

– The node of the document tree where the event
is created is called the target node (like a Java
event source)

– The first phase is called the capturing phase
– Events begin at the root and move toward the

target node:
» If there are registered, enabled, event

handlers at nodes along the way (before the
target node is reached), they are run

– The second phase is at the target node. If there
are registered handlers there for the event, they
are run

– The third phase is the bubbling phase, like
exception handling.
» Event goes back to the root; all encountered

registered, non-enabled, handlers are run

Chapter 5 © 2003 by Addison-Wesley, Inc. 18

The DOM 2 Event Model
(continued)

- Not all events bubble (e.g: load & unload)

- Any handler can stop further propagation by
calling the stopPropagation method of the Event
object

- DOM2 model uses the Event object method,
preventDefault to stop default operations, such

as submission of a form, when an error has been
detected

- Event handler registration is done with the
addEventListener method

- Three parameters:

1. Name of the event, as a string literal
2. The handler function
3. A Boolean value that specifies whether the

event is enabled during the capturing phase

node.addEventListener("change", chkName,
false);

Chapter 5 © 2003 by Addison-Wesley, Inc. 19

The DOM 2 Event Model
(continued)

- A temporary handler can be created by
registering it and then unregistering it with remove
EventListener

- The currentTarget property of Event always
references the object on which the handler is
being executed, while target refers to the event
source.

- The MouseEvent object (a subobject of Event)
has two properties, clientX and clientY, that have
the x and y coordinates of the mouse cursor,
relative to the upper left corner of the browser
window

- An example: A revision of validator, using the
DOM 2 event model

SEE: validator2.html

- Note: DOM 0 and DOM 2 event handling can be
mixed in a document

Chapter 5 © 2003 by Addison-Wesley, Inc. 20

The navigator object

- Indicates which browser is being used

- Two useful properties

1. The appName property has the browser’s name

2. The appVersion property has the version #

- Microsoft has chosen to set the appVersion of IE6
to 4 (?)

- Netscape has chosen to set the appVersion of NS6
to 5.0 (?)

SHOW navigator.html & Figures 5.9 & 5.10

