Overview of JavaScript

= Became a joint venture of Netscape and Sun in 1995,

ed by Netscape, as LiveScript

renamed JavaScript

Now standardized by the European Computer
Manufacturers Association as ECMA-262 (also I1SO
16262)

JavaScript can be divided into three categories, core
(this chapter), client-side (Chapters 5 & 6), and
server-side (not covered in this book)

We'll call collections of JavaScript code scripts, not
programs

Javascript: copyright Matt Evett & Addison Wesley, 2004

i More Basics

= JavaScript and Java are only related
through syntax

= JavaScript is dynamically typed

= JavaScript's support for objects is very
different (it’s not really object oriented!)

= JavaScript be embedded in many different
things, but its primary use is within HTML
documents

Javascript: copyright Matt Evett & Addison Wesley, 2004

Overview

w be-used to replace some of what is

typically done with applets (except graphics)

= JavaScript can be used to replace some of what is
done with CGI (but no file operations or networking)

= Interacts very well with html forms

= The Document Object Model makes it possible to
support dynamic HTML documents with JavaScript

» Event-Driven Computation (See Chapter 5)

= User interactions with HTML documents in JavaScript use
the event diven model of computation

= User interactions with form elements can be used to
trigger execution of scripts

Javascript: copyright Matt Evett & Addison Wesley, 2004

HTML/JavaScript Documents

t_head holds function definitions
and code associated with widgets
= The document body holds code that is
interpreted once, when found by the browser
= This code often dynamically generates html code:

<html> <head> <title>JavaScript Example 1</title> </head>
<body>

<script language=javascript>
for(i=0; i<10;i ++)
if (i%2) document.write("
iis ",i," and i squared is ",i*i);

else document.write("
iis ",i," and i squared is i,"");
</script>

15ROV o5 MRt Evett & Addison Wesley, 2004

Object Orientation?

= JavaScript is NOT an object dented programming language
= Does not support class Iased inheritance

= Cannot support polymorphism

= Has prototype-based inheritance, which is much different
s JavaScript "Objects”

= JavaScript objects are collections of properties,

= like the members of classes in Java and C++
Properties can be data properties or method properties
JavaScript has primitives for simple types
All JavaScript objects are accessed via references
Each object appears as a list of property \alue pairs

= properties can be added or deleted dynamically

= Syntax: objectRef.propName

Javascript: copyright Matt Evett & Addison Wesley, 2004

General Syntax

= Typically JavaScript scripts are embedded in HTML documents

= Either directly, as the content of the <script> tag whose language
attribute is set to "JavaScript"

<script language = "JavaScript">
- JvaScript script —
</script>

= Orindirectly, as a file specified in the src attribute of <script>, as
in

<script language = "JavaScript"
src = "myScript.js">
</script>

Javascript: copyright Matt Evett & Addison Wesley, 2004

i More syntax

= Identifiers. begin with a letter or
underscore, followed by any number of
letters, underscores, and digits
= Case sensitive
= 25 reserved words, plus future reserved
words (basically same as in Java)

= Comments: both // and /* ... ¥/

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Scripts within HTML

= Scripts are often hidden from browsers that do not
include JavaScript interpreters by commenting them:

<l--
-Javascript script —
/[-->

= JavaScript statements usually do not need to be
terminated by semicolons, but most programmers do
0]

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Primitives

= All primitive values have one of the five
primitive types:
= Number, String, Boolean, Undefined, or Null
= Number, String, and Boolean have wrapper
“classes” (Number, String, and Boolean)

= In the cases of Number and String, primitive
values and objects are coerced back and
forth so that primitive values can be treated
essentially as if they were objects

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Primitives (cont.)

= Numeric literals — just like Java

= All numeric values are stored in double-
precision floating point

= String literals are delimited by either ' or "
= Can include escape sequences (e.g., \t)
= Embedded variable names are NOT interpolated
= All String literals are primitive values
= Ex: “Ben said, \" here\’s to you!\""

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Primitives (yet more)

= Boolean values are true and false
= The only Null value is nul/

= The only Undefined value is
undefined

Javascript: copyright Matt Evett & Addison Wesley, 2004

Dynamically Typed

= JavaScript is dynamically typed — any variable
can be used for anything (primitive value or
reference to any object

= The interpreter determines the type of a
particular occurrence of a variable

= Variables can be either implicitly or explicitly
declared:

var sum = 0,

today = "Monday",
flag = false;

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Operators

= Numeric operators for primitives ++, --,
+,-,%/,%
= All operations are double precision
= Same precedence and associativity as Perl

= The Math Object
= Provides methods that operate on Numbers
= floor, round, max, min, trig functions, etc.
» Ex: Math.round(x)

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Number Object

= The Number Object
= Some useful (constant) properties:

= MAX_VALUE, MIN_VALUE, NaN, POSITIVE_INFINITY,
NEGATIVE_INFINITY, PI

= e.g., Number.MAX_VALUE
= An arithmetic operation that creates overflow
returns NaN
= NaN is not == to any humber, not even itself
= Test for it with isNaN(x)
= Number object has the method, toString
= Number.toString(x)

Javascript: copyright Matt Evett & Addison Wesley, 2004

i String operators

= String catenation operator: +

= Coercions

= Catenation coerces numbers to strings
« Ex: 3 + “bob”
= Numeric operators (other than +) coerce
strings to numbers
« Ex: 3 * 4"
= Conversions from strings to numbers that
do not work return NaN

Javascript: copyright Matt Evett & Addison Wesley, 2004

String properties &
methods

= length e.g., var len = stri.length; (a property)
= charAt(position) e.g., str.charAt(3)

= indexOf(string) e.g., str.indexOf('B")

= substring(from, to) e.g., str.substring(1, 3)

= toLowerCase() e.g., str.toLowerCase()

Javascript: copyright Matt Evett & Addison Wesley, 2004

More operations

= Conversion functions (not called through
string objects, because they are not methods)
= parselnt(string) and parseFloat(string)

= The string must begin with a digit or sign and
have a legal number; otherwise NaN is returned

= Not often needed because of implicit coersions
= Thetypeof operator

= Returns "number", "string", or "boolean" for
primitives; returns "object" for objects and null

= Ex: typeof(x)
. 3455/'gnment statements — just like C++ and
ava

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Output

= The JavaScript model for the HTML
document is the Document object

= The model for the browser display
window is the Window object

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Screen (browser) output

= The Window object has two properties, document
and window, which refer to the Document and
Window objects, respectively

= The Document object has a method, write, which
dynamically creates content

= The Rarameter is a string, often catenated from parts, some
of which are variables:

document.write("Answer: " + result +"
");

= The parameter is sent to the browser, so it can be anything
’{h?t can appear in an HTML document (e.g.
, but not

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Dialog boxes

= The Window object has three
methods for creating dialog boxes:
= alert, confirm, and prompt

= The default object is the current
window, so the object need not be
included in the call to any of these
three

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Alert dialog box

= alert("Hey! \n");
= Parameter is plain text, not HTML

= Opens a dialog box that displays
the parameter string and an OK
button

= It waits for the user to press the
OK button

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Confirm dialog box

= confirm("Do you want to continue?");

= Opens a dialog box and displays
the parameter and two buttons, OK
and Cancel

= Returns a Boolean value,
depending on which button was
pressed (it waits for one)

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Prompt dialog boxes

= prompt("What is your name?", "");

= Opens a dialog box and displays its
string parameter, along with a text box
and two buttons, OK and Cancel

= The second parameter is for a default
response if the user presses OK without
typing a response in the text box (waits
for OK

= http://goshawk.emich.edu/%7Esverdlik/JavaS
cript3.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Control Statements

= Syntax is similar to C, Java, and
C++

= Compound statements are
delimited by braces, but compound
statements are not blocks (cannot
declare local variables)

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Conditional expressions

= Three kinds: primitive, relational,
compound

= 1. Primitive values

« If it is a string, it is frue unless it is
empty or "0"

« If it is a number, it is frueunless it is
zero

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Relational conditionals

The usual six: ;1 <, >, <=,>=

= Operands are coerced if necessary

= If one is a string and one is a number, it attempts to
convert the string to a number. If one is Boolean
and the other is not, the boolean operand is coerced
to a number (1 or 0)

s The unusual two: === and '==

= Same as == and !=, except that no coercions are
done (operands must be identical)

= Comparisons of references to objects are not
useful (addresses are compared, not values)

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Compound Conditionals

The usual logical operators: &&, | |, and !

= The primitive values, true and false, must not be
confused with the Boolean object properties

= If a Boolean object is used in a conditional expression, it
is false only if it is null or undefined

= Instead, use code something like x == Boolean.true

= The Boolean object has a method, toString, to allow
them to be printed (true or false)

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Selection statements

= The usual if-then-else statements
= Switch:

switch (expression) {
case value_1:
// value_1 statements
case value_2:
// value_2 statements

.[.&efault:
/| default statements]
}

= The statements can be either statement sequences or compound

statements

= In most situations, the cases end with break
= The control expression can be a number, a string, or a Boolean

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Tterations

= The usual:
« while (...){ ...}
«do{..}while(..)
« for(x;y;2){ ...}

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Object Creation

Objects can be created with new

The most basic object is one that uses
the Object constructor, as in

var myObject = new Object();

The new object has no properties. Itis a
blank object

Properties can be added to an object,
any time

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Object modification

var myAirplane = new Object();
myAirplane.make = "Cessna";
myAirplane.model = "Centurian";

= Objects can be nested, so a property could be
itself another object, created with new

= Properties can be accessed by dot notation or
in array notation, as in

var propertyl = myAirplane["model"];
propertyl = myAirplane.model;

Javascript: copyright Matt Evett & Addison Wesley, 2004

i More object modification

= If you try to access a property that
does not exist, you get undefined

= Properties can be deleted with
delete, as in

delete myAirplane.model;

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Iteration over properties

= for (identifierin object) statement
or compound

for (var prop in myAirplane)

document.write(myAirplane[prop] +
n < br> Il);

Javascript: copyright Matt Evett & Addison Wesley, 2004

Arrays

"

Objects with some special functionality

Elements can be primitive values or references to other
objects

Length is dynamic. The /ength property stores the length

Array objects can be created in two ways, with new, or by
assigning an array literal

var myList = new Array(24, "bread", true);

var myList2 = [24, "bread", true];
var myList3 = new Array(24);

Javascript: copyright Matt Evett & Addison Wesley, 2004

Arrays (cont)

= The length of an array is the highest subscript to which
an element has been assigned, plus 1

myList[122] = "bitsy"; // length is 123

= Because the length property is writeable, you can set it
to make the array any length you like, as in

myList.length = 150;

= This can also shorten the array (if the new length is less
than the old length)

= Only assigned elements take space (sparse
representation)

= See insert_names.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Array operators & methods

= join — e.g., var listStr = list.join(", ");

= reverse

= sort -- Coerces elements to strings and puts them in
alphabetical order

= concat — e.g., newlist = list.concat(47, 26);
= slice

= listPart = list.slice(2, 5);

= listPart2 = list.slice(2);

= toString -- Coerce elements to strings, if necessary, and
g:a_te(natg)them together, separated by commas (exactly like
join(", "

= push, pop, unshift, and shift

= See nested arrays.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Functions More functions

function function_name([formal_parameters]) { = If fun is the name of a function,

-body —
b ref_fun = fun;

/* Now ref_fun is a reference to fun */

. * *
= Return value is the parameter of function’s return ref_fun(); /* A call to fun */

. . = We place all function definitions in the head of the the HTML
= If there is no return, or if the return has no parameter or document, and all calls in the body
if the end of the function is reached, undefined is

returned = All variables that are either implicitly declared or explicitly

declared outside functions are global
= Functions are objects, so variables that reference them

can be treated as other object references (can be passed = Variables explicitly declared in a function are local
as parameters, assigned to variables, and be elements
of an array) = Functions can be nested, but why make life complicated!?

Javascript: copyright Matt Evett & Addison Wesley, 2004 Javascript: copyright Matt Evett & Addison Wesley, 2004

Function Parameters

= Parameters are passed by value, but when a reference

variable is passed, the semantics are pass-by-reference.

This is identical to the way objects are passed in Java.

= There is no type checking of parameters, nor is the
number of parameters checked (excess actual
parameters are ignored, excess formal parameters are
set to undefined

= All parameters are sent through a property array,
arguments, which has the length property

= See parameters.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Primitive parameters

= There is no clean way to send a scalar by reference. One

dirty way is to put the value in an array and send the
array’s name:

function by10(a) { /* ais an array */
a[0] *= 10;
b

var listx = new Array(1); /*serves as wrapper around primitive*/
listx[0] = x;
by10(listx);
x = listx[0];

Javascript: copyright Matt Evett & Addison Wesley, 2004

Example functions

= To sort something other than strings into alphabetical
order, write a 2-argument function that performs the
comparison and provide it to the sort method

= This comparison function, f(a,b), must return a negative
number, zero, or a positive number to indicate whether
a<b, a=b, ora>b

= For example, to sort numbers we could define a simple
comparison function, num_order, as

function num_order(a, b) {returna 4}
= Now, we can sort an array named num_list with:

num_list.sort(num_order);
Javascript: copyright Matt Evett & Addison Wesley, 2004

An Example

Function median: Given an array of numbers, return the median of the
ray

function median(list) { /* Use anonymous function to sort */
list.sort(function (a, b) {return a-b;});
var list_len = list.length;

// Use the modulus operator to determine whether the array's
// length is odd or even.

// Use Math.floor to truncate numbers

// Use Math.round to round numbers

if ((list_len % 2) == 1) /* take the middle number */
return list[Math.floor(list len / 2)];
else /* take average of middle two numbers */
return Math.round((list[list len / 2 + 1]
+ list[list len / 2]) / 2);
} // end of function median

Javascript: copyright Matt Evett & Addison Wesley, 2004

Constructors

= newis always followed by name of a constructor.

. Sevc)eral constructors are pre-defined (Object, Array,
etc.

= In constructors, thisis a reference to the object being
created

function plane(newMake, newModel, newYear){
this.make = newMake;
this.model = newModel;
this.year = newYear;

¥

myPlane = new plane("Cessna", "Centurnian”, "1970");

Javascript: copyright Matt Evett & Addison Wesley, 2004

Method properties

= Objects can also have method properties

function displayPlane() { /* Method */
document.write("Make: ", this.make, "
");
document.write("Model: ", this.model,"
");
document.write("Year: ", this.year, "
");

= Now add the following to the constructor:

this.display = displayPlane;

= Now this "method” can be invoked:
var dp = new Plane(); ...
dp.display();

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Pattern Matching i Regular expressions

= Patterns are based on those of Perl » [pattern/ modifier
= Patterns are usually surrounded by ‘/’ = Modifier: g = global, i=ignore case, m=multiline
:ha;aCt‘::S-] |] = Normal characters match themselves
= Each patiern IS a reguiar expression Metacharacters are “wildcards"'
« Ex: /abc/, /[abc]de/, /a.*b/ - . 100)
= JavaScript has two approaches to YA
pattern-matching operations, but we L %4
will cover Just one: pattern-matc_hmg = The \ operator can convert a metacharacter into a
operations as methods of the String normal character:

object « /Match an asterisk with */

Javascript: copyright Matt Evett & Addison Wesley, 2004 Javascript: copyright Matt Evett & Addison Wesley, 2004

i Pattern-matching functions

= There are four basic pattern-matching operators:
search, replace, match, split

= 1. search(pattern)

= Returns the position of patternin the object string
(position is relative to zero); -1 if failure

= After, $1 will be the substring that matched pattern
var str = "Gluckenheimer";

var position = str.search(/[nm]/);
/* position is now 6, $1 is “n” */

Javascript: copyright Matt Evett & Addison Wesley, 2004

Replace (patterns)

= 2. replace(pattern, string)

= Finds a substring in object string that matches
pattern and replaces it with string (g (global)
modifier can be used)

var str = "Some Rabbits are rabid";
str.replace(/rab/ig, "tim");

= stris now "Some timbits are timid"

= $1is"Rab” and $2is "rab"
= $n are global vars, set after each pattern function

Javascript: copyright Matt Evett & Addison Wesley, 2004

i The match pattern function i More match

= match(pattern) = Without the g modifier, first element of the
returned array is the matched substring, the
= The most general pattern-matching method other elements are the substrings that
(and slowest) matched any parenthesized expressions in
= With the g modifier, returns an array of the pattern

substrings that matched

var str = "I have 20 dollars and 15 cents";

var str = "My 3 kings beat your 2 aces"; var matches = str.match(/(\d+)([*\d]+)(\d+)/);

var matches = str.match(/[ab]./g);

Afterward, matches = ["20 dollars and 15", “20",

= matchesis set to ["be", "at", "ac"] “ dollars and ”, “15"]
4

Javascript: copyright Matt Evett & Addison Wesley, 2004 Javascript: copyright Matt Evett & Addison Wesley, 2004

The split operator

= split(parameter)
= Like the Perl split operator

= The parameter could be a string or a pattern.
- lI,ll and /,/

= In either case, it is used to split the string into
substrings and return an array of them

var str = “128.4.64.127";

matches = str.split(/\./);
= Now, matches=["128","4","64","127"]
= See forms_check.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Debugging JavaScript in IE

El A

Select Internet Options from the Too/s menu
Choose the Advanced tab
Uncheck the Disable script debugging box

gheck the Display a notification about every script error
0X

Now, a script error causes a small window to be opened
with an explanation of the error

Intarnet Optians | I

General | Secuity | Privacy | Conlent | Connecbons | Programs | Advancad

el Explorer updates
 and Favorites (requires restarn)

seript dabugging
[D‘i play a notfication about every script emor

Javascript: copyright Matt Evett & Addison Wesley, 2004

i Debugging in Netscape

= Select Tools, Web Development and JavaScript Console

= A small window appears for displaying script errors

= Remember to Clear the console after dealing with an
error message — avoids confusion

@0 Parameters - Netscape

.. Fle Edit View Go Bookmarks |Tools Window Help

Search the Web —_—

“ G Q @ Q Form Manager A ich.edu/~evett/WebProgra
. /8| B Ml % Home 1R Cookie Manager * || BBookmarks

My Sidebar x Search » ﬁ
| News 2 Password Manager [a—

EEE— Pﬁ Download Manager parameter(s)
' Bookmarks P?ﬁ Development @ Java Console

Search Moz JavaScript Console

Javascript: copyright Matt Evett & Addison Wesley, 2004

