
Javascript: copyright Matt Evett & Addison Wesley, 2004

Overview of JavaScript

Originally developed by Netscape, as LiveScript
Became a joint venture of Netscape and Sun in 1995,
renamed JavaScript
Now standardized by the European Computer
Manufacturers Association as ECMA-262 (also ISO
16262)
JavaScript can be divided into three categories, core
(this chapter), client-side (Chapters 5 & 6), and
server-side (not covered in this book)
We’ll call collections of JavaScript code scripts, not
programs

Javascript: copyright Matt Evett & Addison Wesley, 2004

More Basics

JavaScript and Java are only related
through syntax
JavaScript is dynamically typed
JavaScript’s support for objects is very
different (it’s not really object oriented!)
JavaScript be embedded in many different
things, but its primary use is within HTML
documents

Javascript: copyright Matt Evett & Addison Wesley, 2004

Overview

JavaScript can be used to replace some of what is
typically done with applets (except graphics)
JavaScript can be used to replace some of what is
done with CGI (but no file operations or networking)
Interacts very well with html forms
The Document Object Model makes it possible to
support dynamic HTML documents with JavaScript
Event-Driven Computation (See Chapter 5)

User interactions with HTML documents in JavaScript use
the event- driven model of computation

User interactions with form elements can be used to
trigger execution of scripts

Javascript: copyright Matt Evett & Addison Wesley, 2004

HTML/JavaScript Documents

The document head holds function definitions
and code associated with widgets
The document body holds code that is
interpreted once, when found by the browser

This code often dynamically generates html code:
<html> <head> <title>JavaScript Example 1</title> </head>
<body>

<script language=javascript>

for(i=0; i<10;i ++)

if (i%2) document.write("
i is ",i," and i squared is ",i*i);

else document.write("
i is ",i," and i squared is i,"");
</script>

</body> </html>

Javascript: copyright Matt Evett & Addison Wesley, 2004

Object Orientation?

JavaScript is NOT an object- oriented programming language
Does not support class- based inheritance

Cannot support polymorphism
Has prototype-based inheritance, which is much different

JavaScript “Objects”:

JavaScript objects are collections of properties,
like the members of classes in Java and C++

Properties can be data properties or method properties
JavaScript has primitives for simple types
All JavaScript objects are accessed via references
Each object appears as a list of property- value pairs

properties can be added or deleted dynamically
Syntax: objectRef.propName

Javascript: copyright Matt Evett & Addison Wesley, 2004

General Syntax
Typically JavaScript scripts are embedded in HTML documents

Either directly, as the content of the <script> tag whose language
attribute is set to "JavaScript"

<script language = "JavaScript">
- JavaScript script –
</script>

Or indirectly, as a file specified in the src attribute of <script>, as
in

<script language = "JavaScript"
src = "myScript.js">

</script>

Javascript: copyright Matt Evett & Addison Wesley, 2004

More syntax

Identifiers: begin with a letter or
underscore, followed by any number of
letters, underscores, and digits

Case sensitive
25 reserved words, plus future reserved
words (basically same as in Java)

Comments: both // and /* … */

Javascript: copyright Matt Evett & Addison Wesley, 2004

Scripts within HTML
Scripts are often hidden from browsers that do not
include JavaScript interpreters by commenting them:

<!--
-JavaScript script –
//-->

JavaScript statements usually do not need to be
terminated by semicolons, but most programmers do
so

Javascript: copyright Matt Evett & Addison Wesley, 2004

Primitives
All primitive values have one of the five
primitive types:

Number, String, Boolean, Undefined, or Null
Number, String, and Boolean have wrapper
“classes” (Number, String, and Boolean)
In the cases of Number and String, primitive
values and objects are coerced back and
forth so that primitive values can be treated
essentially as if they were objects

Javascript: copyright Matt Evett & Addison Wesley, 2004

Primitives (cont.)

Numeric literals – just like Java
All numeric values are stored in double-
precision floating point
String literals are delimited by either ' or "

Can include escape sequences (e.g., \t)
Embedded variable names are NOT interpolated
All String literals are primitive values
Ex: “Ben said, \“ here\’s to you!\““

Javascript: copyright Matt Evett & Addison Wesley, 2004

Primitives (yet more)

Boolean values are true and false
The only Null value is null
The only Undefined value is
undefined

Javascript: copyright Matt Evett & Addison Wesley, 2004

Dynamically Typed
JavaScript is dynamically typed – any variable
can be used for anything (primitive value or
reference to any object)
The interpreter determines the type of a
particular occurrence of a variable
Variables can be either implicitly or explicitly
declared:

var sum = 0,
today = "Monday",
flag = false;

Javascript: copyright Matt Evett & Addison Wesley, 2004

Operators
Numeric operators for primitives ++, --,
+, -, *, /, %

All operations are double precision
Same precedence and associativity as Perl

The Math Object
Provides methods that operate on Numbers
floor, round, max, min, trig functions, etc.
Ex: Math.round(x)

Javascript: copyright Matt Evett & Addison Wesley, 2004

Number Object
The Number Object

Some useful (constant) properties:
MAX_VALUE, MIN_VALUE, NaN, POSITIVE_INFINITY,
NEGATIVE_INFINITY, PI
e.g., Number.MAX_VALUE

An arithmetic operation that creates overflow
returns NaN

NaN is not == to any number, not even itself
Test for it with isNaN(x)

Number object has the method, toString
Number.toString(x)

Javascript: copyright Matt Evett & Addison Wesley, 2004

String operators

String catenation operator: +
Coercions

Catenation coerces numbers to strings
Ex: 3 + “bob”

Numeric operators (other than +) coerce
strings to numbers

Ex: 3 * “4”

Conversions from strings to numbers that
do not work return NaN

Javascript: copyright Matt Evett & Addison Wesley, 2004

String properties &
methods

length e.g., var len = str1.length; (a property)

charAt(position) e.g., str.charAt(3)

indexOf(string) e.g., str.indexOf('B')

substring(from, to) e.g., str.substring(1, 3)

toLowerCase() e.g., str.toLowerCase()

Javascript: copyright Matt Evett & Addison Wesley, 2004

More operations
Conversion functions (not called through
string objects, because they are not methods)

parseInt(string) and parseFloat(string)
The string must begin with a digit or sign and
have a legal number; otherwise NaN is returned
Not often needed because of implicit coersions

The typeof operator
Returns "number", "string", or "boolean" for
primitives; returns "object" for objects and null
Ex: typeof(x)

Assignment statements – just like C++ and
Java

Javascript: copyright Matt Evett & Addison Wesley, 2004

Output

The JavaScript model for the HTML
document is the Document object
The model for the browser display
window is the Window object

Javascript: copyright Matt Evett & Addison Wesley, 2004

Screen (browser) output
The Window object has two properties, document
and window, which refer to the Document and
Window objects, respectively
The Document object has a method, write, which
dynamically creates content

The parameter is a string, often catenated from parts, some
of which are variables:

document.write("Answer: " + result +"
");

The parameter is sent to the browser, so it can be anything
that can appear in an HTML document (e.g.
, but not
\n)

Javascript: copyright Matt Evett & Addison Wesley, 2004

Dialog boxes

The Window object has three
methods for creating dialog boxes:

alert, confirm, and prompt

The default object is the current
window, so the object need not be
included in the call to any of these
three

Javascript: copyright Matt Evett & Addison Wesley, 2004

Alert dialog box

alert("Hey! \n");
Parameter is plain text, not HTML
Opens a dialog box that displays
the parameter string and an OK
button
It waits for the user to press the
OK button

Javascript: copyright Matt Evett & Addison Wesley, 2004

Confirm dialog box

confirm("Do you want to continue?");
Opens a dialog box and displays
the parameter and two buttons, OK
and Cancel
Returns a Boolean value,
depending on which button was
pressed (it waits for one)

Javascript: copyright Matt Evett & Addison Wesley, 2004

Prompt dialog boxes
prompt("What is your name?", "");
Opens a dialog box and displays its
string parameter, along with a text box
and two buttons, OK and Cancel
The second parameter is for a default
response if the user presses OK without
typing a response in the text box (waits
for OK)
http://goshawk.emich.edu/%7Esverdlik/JavaS
cript3.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Control Statements

Syntax is similar to C, Java, and
C++
Compound statements are
delimited by braces, but compound
statements are not blocks (cannot
declare local variables)

Javascript: copyright Matt Evett & Addison Wesley, 2004

Conditional expressions

Three kinds: primitive, relational,
compound

1. Primitive values
If it is a string, it is true unless it is
empty or "0"
If it is a number, it is true unless it is
zero

Javascript: copyright Matt Evett & Addison Wesley, 2004

Relational conditionals
The usual six: ==, !=, <, >, <=, >=

Operands are coerced if necessary
If one is a string and one is a number, it attempts to
convert the string to a number. If one is Boolean
and the other is not, the boolean operand is coerced
to a number (1 or 0)

The unusual two: === and !==
Same as == and !=, except that no coercions are
done (operands must be identical)
Comparisons of references to objects are not
useful (addresses are compared, not values)

Javascript: copyright Matt Evett & Addison Wesley, 2004

Compound Conditionals
The usual logical operators: &&, ||, and !

The primitive values, true and false, must not be
confused with the Boolean object properties

If a Boolean object is used in a conditional expression, it
is false only if it is null or undefined

Instead, use code something like x == Boolean.true

The Boolean object has a method, toString, to allow
them to be printed (true or false)

Javascript: copyright Matt Evett & Addison Wesley, 2004

Selection statements
The usual if-then-else statements
Switch:

switch (expression) {
case value_1:

// value_1 statements
case value_2:

// value_2 statements
…
[default:

// default statements]
}

The statements can be either statement sequences or compound
statements
In most situations, the cases end with break
The control expression can be a number, a string, or a Boolean

Javascript: copyright Matt Evett & Addison Wesley, 2004

Iterations

The usual:
while (…) { … }
do { …} while (…)
for(x; y; z) { … }

Javascript: copyright Matt Evett & Addison Wesley, 2004

Object Creation

Objects can be created with new

The most basic object is one that uses
the Object constructor, as in
var myObject = new Object();

The new object has no properties. It is a
blank object
Properties can be added to an object,
any time

Javascript: copyright Matt Evett & Addison Wesley, 2004

Object modification
var myAirplane = new Object();
myAirplane.make = "Cessna";
myAirplane.model = "Centurian";

Objects can be nested, so a property could be
itself another object, created with new

Properties can be accessed by dot notation or
in array notation, as in

var property1 = myAirplane["model"];
property1 = myAirplane.model;

Javascript: copyright Matt Evett & Addison Wesley, 2004

More object modification

If you try to access a property that
does not exist, you get undefined
Properties can be deleted with
delete, as in
delete myAirplane.model;

Javascript: copyright Matt Evett & Addison Wesley, 2004

Iteration over properties

for (identifier in object) statement
or compound

for (var prop in myAirplane)
document.write(myAirplane[prop] +
"
");

Javascript: copyright Matt Evett & Addison Wesley, 2004

Arrays
Objects with some special functionality

Elements can be primitive values or references to other
objects

Length is dynamic. The length property stores the length

Array objects can be created in two ways, with new, or by
assigning an array literal

var myList = new Array(24, "bread", true);
var myList2 = [24, "bread", true];
var myList3 = new Array(24);

Javascript: copyright Matt Evett & Addison Wesley, 2004

Arrays (cont)
The length of an array is the highest subscript to which
an element has been assigned, plus 1

myList[122] = "bitsy"; // length is 123

Because the length property is writeable, you can set it
to make the array any length you like, as in
myList.length = 150;

This can also shorten the array (if the new length is less
than the old length)
Only assigned elements take space (sparse
representation)
See insert_names.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Array operators & methods
join – e.g., var listStr = list.join(", ");

reverse
sort -- Coerces elements to strings and puts them in
alphabetical order
concat – e.g., newList = list.concat(47, 26);
slice

listPart = list.slice(2, 5);
listPart2 = list.slice(2);

toString -- Coerce elements to strings, if necessary, and
catenate them together, separated by commas (exactly like
join(", "))
push, pop, unshift, and shift
See nested_arrays.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Functions
function function_name([formal_parameters]) {
-body –
}

Return value is the parameter of function’s return

If there is no return, or if the return has no parameter or
if the end of the function is reached, undefined is
returned

Functions are objects, so variables that reference them
can be treated as other object references (can be passed
as parameters, assigned to variables, and be elements
of an array)

Javascript: copyright Matt Evett & Addison Wesley, 2004

More functions
If fun is the name of a function,

ref_fun = fun;
/* Now ref_fun is a reference to fun */

ref_fun(); /* A call to fun */

We place all function definitions in the head of the the HTML
document, and all calls in the body

All variables that are either implicitly declared or explicitly
declared outside functions are global

Variables explicitly declared in a function are local

Functions can be nested, but why make life complicated!?

Javascript: copyright Matt Evett & Addison Wesley, 2004

Function Parameters
Parameters are passed by value, but when a reference
variable is passed, the semantics are pass-by-reference.
This is identical to the way objects are passed in Java.

There is no type checking of parameters, nor is the
number of parameters checked (excess actual
parameters are ignored, excess formal parameters are
set to undefined)

All parameters are sent through a property array,
arguments, which has the length property

See parameters.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Primitive parameters
There is no clean way to send a scalar by reference. One
dirty way is to put the value in an array and send the
array’s name:

function by10(a) { /* a is an array */
a[0] *= 10;

}
...
var listx = new Array(1); /*serves as wrapper around primitive*/
...
listx[0] = x;
by10(listx);
x = listx[0];

Javascript: copyright Matt Evett & Addison Wesley, 2004

Example functions
To sort something other than strings into alphabetical
order, write a 2-argument function that performs the
comparison and provide it to the sort method

This comparison function, f(a,b), must return a negative
number, zero, or a positive number to indicate whether
a<b, a=b, or a>b

For example, to sort numbers we could define a simple
comparison function, num_order, as

function num_order(a, b) {return a- b;}

Now, we can sort an array named num_list with:

num_list.sort(num_order);
Javascript: copyright Matt Evett & Addison Wesley, 2004

An Example
Function median: Given an array of numbers, return the median of the

array

function median(list) { /* Use anonymous function to sort */
list.sort(function (a, b) {return a-b;});
var list_len = list.length;

// Use the modulus operator to determine whether the array's
// length is odd or even.
// Use Math.floor to truncate numbers
// Use Math.round to round numbers
if ((list_len % 2) == 1) /* take the middle number */
return list[Math.floor(list_len / 2)];

else /* take average of middle two numbers */
return Math.round((list[list_len / 2 + 1]

+ list[list_len / 2]) / 2);
} // end of function median

Javascript: copyright Matt Evett & Addison Wesley, 2004

Constructors
new is always followed by name of a constructor.
Several constructors are pre-defined (Object, Array,
etc.)
In constructors, this is a reference to the object being
created

function plane(newMake, newModel, newYear){
this.make = newMake;
this.model = newModel;
this.year = newYear;

}

myPlane = new plane("Cessna", "Centurnian", "1970");

Javascript: copyright Matt Evett & Addison Wesley, 2004

Method properties
Objects can also have method properties

function displayPlane() { /* Method */
document.write("Make: ", this.make, "
");
document.write("Model: ", this.model,"
");
document.write("Year: ", this.year, "
");
Now add the following to the constructor:
this.display = displayPlane;

Now this “method” can be invoked:
var dp = new Plane(); …
dp.display();

Javascript: copyright Matt Evett & Addison Wesley, 2004

Pattern Matching
Patterns are based on those of Perl

Patterns are usually surrounded by ‘/’
characters.
Each pattern is a regular expression
Ex: /abc/, /[abc]de/, /a.*b/

JavaScript has two approaches to
pattern-matching operations, but we
will cover just one: pattern-matching
operations as methods of the String
object

Javascript: copyright Matt Evett & Addison Wesley, 2004

Regular expressions
/pattern/modifier

Modifier: g = global, i=ignore case, m=multiline
Normal characters match themselves
Metacharacters are “wildcards”:

|(){}[]
$^
*+?.
The \ operator can convert a metacharacter into a
normal character:

/Match an asterisk with */

Javascript: copyright Matt Evett & Addison Wesley, 2004

Pattern-matching functions
There are four basic pattern-matching operators:
search, replace, match, split

1. search(pattern)

Returns the position of pattern in the object string
(position is relative to zero); -1 if failure
After, $1 will be the substring that matched pattern

var str = "Gluckenheimer";
var position = str.search(/[nm]/);

/* position is now 6, $1 is “n” */

Javascript: copyright Matt Evett & Addison Wesley, 2004

Replace (patterns)
2. replace(pattern, string)

Finds a substring in object string that matches
pattern and replaces it with string (g (global)
modifier can be used)

var str = "Some Rabbits are rabid";
str.replace(/rab/ig, "tim");

str is now "Some timbits are timid"
$1 is “Rab” and $2 is "rab“

$n are global vars, set after each pattern function

Javascript: copyright Matt Evett & Addison Wesley, 2004

The match pattern function
match(pattern)

The most general pattern-matching method
(and slowest)
With the g modifier, returns an array of the
substrings that matched

var str = "My 3 kings beat your 2 aces";
var matches = str.match(/[ab]./g);

matches is set to ["be", "at", "ac"]

Javascript: copyright Matt Evett & Addison Wesley, 2004

More match
Without the g modifier, first element of the
returned array is the matched substring, the
other elements are the substrings that
matched any parenthesized expressions in
pattern

var str = “I have 20 dollars and 15 cents";
var matches = str.match(/(\d+)([^\d]+)(\d+)/);

Afterward, matches = [“20 dollars and 15”, “20”,
“ dollars and ”, “15”]

Javascript: copyright Matt Evett & Addison Wesley, 2004

The split operator
split(parameter)
Like the Perl split operator
The parameter could be a string or a pattern.

"," and /,/
In either case, it is used to split the string into
substrings and return an array of them
var str = “128.4.64.127”;
matches = str.split(/\./);
Now, matches=[“128”,”4”,”64”,”127”]
See forms_check.html

Javascript: copyright Matt Evett & Addison Wesley, 2004

Debugging JavaScript in IE
1. Select Internet Options from the Tools menu
2. Choose the Advanced tab
3. Uncheck the Disable script debugging box
4. Check the Display a notification about every script error

box
Now, a script error causes a small window to be opened
with an explanation of the error

Javascript: copyright Matt Evett & Addison Wesley, 2004

Debugging in Netscape

Select Tools, Web Development and JavaScript Console
A small window appears for displaying script errors
Remember to Clear the console after dealing with an
error message – avoids confusion

