Chapter 10
File 1/0

SAVITCH

ABSOLUTE
JAVA

5/24/12

Streams

» A stream is an object that enables the
flow of data between a program and
some |/O device or file
— If the data flows into a program, then the

stream is called an input stream

— If the data flows out of a program, then
the stream is called an output stream

©2006 Pearson Addison-Wesley. Al ights reserved 102

Streams

* Input streams can flow from the keyboard or
from a file
- System.in is an input stream that connects to
the keyboard
Scanner keyboard = new Scanner (System.in) ;
» Output streams can flow to a screen or to a
file
- System.out is an output stream that connects
to the screen
System.out.println("Output stream");

©2006 Pearson Addison-Wesley. All ights reserved 103

Text Files and Binary Files

« Files that are designed to be read by human
beings, and that can be read or written with
an editor are called text files
— Text files can also be called ASCI! files because
the data they contain uses an ASCII encoding
scheme

— An advantage of text files is that the are usually
the same on all computers, so that they can
move from one computer to another

©2006 Pearson Addison-Wesley. Al ights reserved 104

Text Files and Binary Files

* Files that are designed to be read by
programs and that consist of a sequence of
binary digits are called binary files
— Binary files are designed to be read on the same
type of computer and with the same
programming language as the computer that
created the file

— An advantage of binary files is that they are
more efficient to process than text files

— Unlike most binary files, Java binary files have
the advantage of being platform independent
also

©2006 Pearson Addison-Wesley. All ights resarved 105

Writing to a Text File

* The class PrintWriter is a stream
class that can be used to write to a
text file
— An object of the class PrintWriter has
the methods print and println

— These are similar to the System.out
methods of the same names, but are
used for text file output, not screen output

©2006 Pearson Addison-Wesley. Al ights reserved 106

Writing to a Text File

All the file 1/0O classes that follow are in the package
java.io, so a program that uses PrintWriter
will start with a set of import statements:

import java.io.PrintWriter;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;
* The class PrintWriter has no constructor that
takes a file name as its argument

— It uses another class, FileOutputStream, to convert a
file name to an object that can be used as the argument to
its (the PrintWriter) constructor

+ See TextFileOutputDemo.java
— The next several slides discuss it

©2006 Pearson Addison-Wesley. Al ights reserved 107

5/24/12

Writing to a Text File

» A stream of the class PrintWriter is
created and connected to a text file for
writing as follows:

PrintWriter outputStreamName;

outputStreamName = new PrintWriter (new

FileOutputStream(FileName)) ;
— The class FileOutputStream takes a string
representing the file name as its argument
— The class PrintWriter takes the anonymous
FileOutputStream object as its argument
+ Re: why is it “anonymous”?

©2006 Pearson Addison-Wesley. Al rights reserved 108

Writing to a Text File

» This produces an object of the class
PrintWriter thatis connected to the file
FileName
— The process of connecting a stream to a file is

called opening the file

— If the file already exists, then doing this causes
the old contents to be lost

— If the file does not exist, then a new, empty file
named FileName is created

» After doing this, the methods print and
println can be used to write to the file

©2006 Pearson Addison-Wesley. Al ights reserved 10-9

Writing to a Text File

* When a text file is opened in this way, a
FileNotFoundException can be thrown

— In this context it actually means that the file could not be
created

— This type of exception can also be thrown when a program
attempts to open a file for reading and there is no such file
« It is therefore necessary to enclose this code in
exception handling blocks
— (Note that Eclipse will prompt you to do so)
— The file should be opened inside a try block
— A catch block should catch and handle the possible
exception
— The variable that refers to the PrintWriter object should
be declared outside the block (and initialized to null) so
that it is not local to the block

©2006 Pearson Addison-Wesley. Al ights reserved 10-10

Writing to a Text File

* When a program is finished writing to a file,
it should always close the stream connected
to that file

outputStreamName.close() ;

— This allows the system to release any resources
used to connect the stream to the file

— If the program does not close the file before the
program ends, Java will close it automatically,
but it is safest to close it explicitly

©2006 Pearson Addison-Wesley. Al ights reserved 10-1

©2006 Pearson Addison-Wesley. Al rights reserved 10-12

Writing to a Text File

» Output streams connected to files are
usually buffered

— Rather than physically writing to the file as soon
as possible, the data is saved in a temporary
location (buffer)

— When enough data accumulates, or when the
method £1ush is invoked, the buffered data is
written to the file all at once

— This is more efficient, since physical writes to a
file can be slow

©2006 Pearson Addison-Wesley. Al ights reserved 10-13

5/24/12

Writing to a Text File

* The method close invokes the method
f£1lush, thus insuring that all the data is
written to the file
— If a program relies on Java to close the file, and
the program terminates abnormally, then any
output that was buffered may not get written to
the file

— Also, if a program writes to a file and later
reopens it to read from the same file, it will have
to be closed first anyway

— The sooner a file is closed after writing to it, the
less likely it is that there will be a problem

©2006 Pearson Addison-Wesley. Al rights reserved 10-14

File Names

* The rules for how file names should be
formed depend on a given operating
system, not Java
—When a file name is given to a java
constructor for a stream, it is just a string,
not a Java identifier (e.g.,
"fileName. txt")

— Any suffix used, such as . txt has no
special meaning to a Java program

©2006 Pearson Addison-Wesley. Al ights reserved 10-15

A File Has Two Names

« Every input file and every output file used
by a program has two names:

1. The real file name used by the operating
system

2. The name of the stream that is connected to
the file
* The actual file name is used to connect to
the stream
* The stream name serves as a temporary
name for the file, and is the name that is
primarily used within the program

©2006 Pearson Addison-Wesley. Al ights reserved 10-16

IOException

* When performing file /O there are many situations
in which an exception, such as
FileNotFoundException, may be thrown

* Many of these exception classes are subclasses of
the class IOException

— The class IOException is the root class for a variety of
exception classes having to do with input and/or output

* These exception classes are all checked exceptions

— Therefore, they must be caught or declared in a throws
clause

©2006 Pearson Addison-Wesley. Al ights reserved 10-17

Unchecked Exceptions

In contrast, the exception classes
NoSuchElementException,
InputMismatchException, and
IllegalStateException are all
unchecked exceptions

— Unchecked exceptions are not required to
be caught or declared in a throws clause

©2006 Pearson Addison-Wesley. Al rights reserved 10-18

Pitfall: a try Block is a Block

« Since opening a file can result in an exception, it
should be placed inside a try block

* If the variable for a PrintWriter object needs to
be used outside that block, then the variable must
be declared outside the block

— Otherwise it would be local to the block, and could not be
used elsewhere

— Ifit were declared in the block and referenced elsewhere,
the compiler will generate a message indicating that it is
an undefined identifier

©2006 Pearson Addison-Wesley. All ights reserved 10-19

5/24/12

Appending to a Text File

» To create a PrintWriter object and
connect it to a text file for appending, a
second argument, set to true, must be
used in the constructor for the
FileOutputStream object

outputStreamName = new PrintWriter (new
FileOutputStream(FileName, true));
— After this statement, the methods print,
println and/or printf can be used to write to
the file

— The new text will be written following the old text
in the file

©2006 Pearson Addison-Wesley. Al rights reserved 10-20

toString Helps with Text File Output

If a class has a suitable toString ()
method, and anObject is an object of that
class, then anObject can be used as an
argument to System.out.println, and it
will produce sensible output
» The same thing applies to the methods
print and println of the class
PrintWriter

outputStreamName.println (anObject) ;

©2006 Pearson Addison-Wesley. All ights reserved 1021

Some Methods of the Class
PrintWriter (Part 1 of 3)

Display 1.2 Some Methods of the Class Printhriter

PrintWriter and FileOutputStrean are in the java. io package.
public Printuriter(OutputStrean streanbject)

Thisis the only constructor you are likely to need. There i no constructor that accepts afile name as an
argument. f you want to create a stream using a file name, you use

new Printhiriter(new FileOutputStrean(file_Name))
When the constructor is used in this way, a blank file is created. If there already was a file named
File_Name, then the old contents of the fle are lost. If you want instead to append new text to the end.
of the old file contents, use

new PrintWriter(new FileOutputStreamCFileName, true))
(For an explanation of the argument true, read the subsection “Appending to a Text File.")

When used in either of these ways, the FileOutputStream constructor, and so the PrintWriter con-
structor invocation, can throw a Fi which is a kind of

If you want to create a stream using an object of the class File, you can use a File object in place of the
File_Name. (The File class will be covered in Section 10.3. We discuss it here so that you will have a more
complete reference in this display, but you can ignore the reference to the class File until after you've
read that section.)

(continued)
©2006 Pearson Addison-Wesley. Al ights reserved 1022

Some Methods of the Class
PrintWriter (Part 2 of 3)

Display 10.2 Some Methods of the Class Printhriter

public void println(Argument)

The Argument can be a string, character, integer, floating-point number, boolean value, or any combi-
nation of these, connected with + signs. The Argument can also be any object, although it will not work as
desired unless the object has a properly defined toString() method. The Argumentis output to the file
connected to the stream. After the Argument has been output, the line ends, and so the next output s sent
to the next line.

public void print(Argument)

Thisis the same as print1n, except that this method does not end the line, so the next output will be on
the same line.

(continued)

©2006 Pearson Addison-Wesley. All ights resarved 10-23

Some Methods of the Class
PrintWriter (Part 3 of 3)

Display 10.2 Some Methods of the Class PrintWriter

public PrintWriter printf(Arguments)

This is the same as System. ot print, except that this method sends output to a text ile rather than
to the screen. It returns the calling object. However, we have always used printf as a void method.

public void close()
Closes the stream’s connection to a fle. This method calls FLush before closing the file.
public void flush()

Flushes the output streamn. This forces an actual physical write to the file of any data that has been buffered
and not yet physically written to the file. Normally, you should not need to invoke Flush.

©2006 Pearson Addison-Wesley. Al rights reserved 10-24

Reading From a Text File Using
Scanner

The class Scanner can be used for reading from
the keyboard as well as reading from a text file

— Simply replace the argument System. in (to the Scanner

constructor) with a suitable stream that is connected to the
text file

Scanner StreamObject =
new Scanner (new FileInputStream(FileName)) ;
» Methods of the Scanner class for reading input
behave the same whether reading from the
keyboard or reading from a text file
— For example, the nextInt and nextLine methods

©2006 Pearson Addison-Wesley. All ights reserved 10-25

Reading Input from a Text File Using
Scanner (Part 1 of 4)

Display 10.3 Reading Input from a Text File Using Scanner

import java.util.Scanner;
inport java.io.FileInputStrean;
import java.io.FileNotFoundException;

public class TextFileScannerDemo
{
public static void main(String[] args)

System.out.println("I will read three numbers and a line");
10 System.out.println("of text from the file morestuff.txt.");

12 Scanner inputStrean = null;

13

14 try

15 {

16 inputStrean =

17 new Scanner (new FileInputStrean("morestuff.txt"));

18 3

(continued)

©2006 Pearson Addison-Wesley. Allights reserved 1026

Reading Input from a Text File Using
Scanner (Part 2 of 4)

Display 10.3 Reading Input from a Text File Using Scanner

19 catch(FileNotFoundException e)
26 {

System.out.println("File morestuff.txt was not found");
System.out.println("or could not be opened.");

Systen. exit(0);

int nl = inputStream.nextInt();

26 int n2 = inputStream.nextInt();

2 int n3 = inputStream.nextInt();

29 inputStream.nextLine(); //To go to the next line

31 String line = inputStream.nextLine();

(continued)

©2006 Pearson Addison-Wesley. All ights reserved 10-27

Reading Input from a Text File Using
Scanner (Part 3 of 4)

Display 10.3 Reading Input from a Text File Using Scanner

33 System.out.println("The three numbers read from the file are:");
34 System.out.println(nl + ", " + n2 + ", and " + n3);

36 System.out.println("The line read from the file is:");

37 System.out.printin(line);

39 inputStrean.close();
4 3
a3

File morestuff.txt

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-28

Reading Input from a Text File Using
Scanner (Part 4 of 4)

Display 10.3 Reading Input from a Text File Using Scanner

SCREEN OUTPUT

I will read three numbers and a line

of text from the file morestuff.txt.

The three numbers read from the file are:
1, 2, and 3

The line read from the file is:

Eat my shorts.

©2006 Pearson Addison-Wesley. All ights resarved 10-29

Testing for the End of a Text File with
Scanner

» A program that tries to read beyond the end
of a file using methods of the Scanner class
will cause an exception to be thrown

» However, instead of having to rely on an
exception to signal the end of a file, the
Scanner class provides methods such as
hasNextInt and hasNextLine
— These methods can also be used to check that

the next token to be input is a suitable element of
the appropriate type

©2006 Pearson Addison-Wesley. Al rights reserved 10-30

5/24/12

Checking for the End of a Text File with
hasNextLine (Part 1 of 4)

Display 10., Checking for the End of a Text File with hasNextLine

5/24/12

1 import java.util.Scanner;

2 import java.io.FileInputStream;

3 import java.io.FileNotFoundException;
4 import java.io.PrintWriter;
5

6

7

8

import java.io.FileOutputStream;

public class HasNextLineDemo

9 public static void main(String(] args)
10 1
11 Scanner inputStream = null;
12 Printiriter outputStream = null;
(continued)
© 2006 Pearson Addison-Wesley. Al righis reserved 1031

Checking for the End of a Text File with
hasNextLine (Part 2 of 4)

Display 10,5, Checking for the End of a Text File with hasNextLine

13 try

14 {

15 inputStream =

16 new Scanner(new FileInputStream("original.txt"));

17 outputStream = new Printiriter(

18 new FileOutputStream("numbered. txt"));

19

20 catch(FileNotFoundException e)

21 1

22 System.out.println("Problem opening Files.");

23 System.exit(0);

24 }

25 String line = null;

26 int count =

(continued)

©2006 Pearson Addison-Wesley. Allights reserved 1032

Checking for the End of a Text File with
hasNextLine (Part 3 of 4)

Display 10.4 Checking for the End of a Text File with hasNextLine

27 while (inputStream.hasNextLine())

28

29 line = inputStream.nextlLine();

30 count++;

31 outputStream.println(count + " " + line);

32

33 inputStream.close();

34 outputStream.close();

35 ¥

36

} (continued)

© 2006 Pearson Addison-Wesley. Al righis reserved 1033

Checking for the End of a Text File with
hasNextLine (Part 4 of 4)

Display 10, Checking for the End of a Text File with hasNextLine

File original.txt

Little Miss Muffet

sat on a tuffet

eating her curves away.
Along came a spider

who sat down beside her

and said "Will you marry me?"

File numbered.txt (after the program is run)

1 Little Miss Muffet

sat on a tuffet

eating her curves away.
Along came a spider

who sat down beside her

and said "Will you marry me?"

ou s wn

©2006 Pearson Addison-Wesley. Al ights reserved 10-34

Checking for the End of a Text File with
hasNextInt (Part 1 of 2)

Display 0.5 Checking for the End of a Text File with hasNextInt

import java.util.Scanner;
2 import java.io.FileInputStream;
3 import java.io.FileNotFoundException;

4 public class HasNextIntDemo
5
6 public static void main(String[] args)
7 {
8 Scanner inputStream = null;
9 try
10
11 inputStream =
12 new Scanner(new FileInputStream("data.txt"));
13 }
11 catch(FileNotFoundException e)
15 {
16 System.out.println("File data.txt was not found");
17 System.out.println("or could not be opened.™;
18 System.exit(6);
19 3
(continued)
© 2006 Pearson Addison-Wesley. Al righis reserved 1035

Checking for the End of a Text File with
hasNextInt (Part 2 of 2)

Display 10.5 Checking for the End of a Text File with hasNextInt

20 int next, sum = 0;

21 while (inputStream.hasNextInt())

22 {

23 next = inputStream.nextInt();

21 sum = sum + next;

25 }

26 inputStrean.close();

27 System.out.println("The sum of the numbers is " + sum);

SCREEN OUTPUT

The sum of the numbers is 16

©2006 Pearson Addison-Wesley. Al rights reserved 10-36

5/24/12

Methods in the Class Scanner
(Part 1 of 11)

Display 10.6 Methods in the Class Scanner

Scanner is in the java. uti1 package.

public Scanner(InputStream streamObject)
There is no constructor that accepts a file name as an argument. If you want to create a stream using a file
narme, you can use

new Scanner(new FileInputStrean(file_Name))
When used in this way, the FileInputStrea constructor, and thus the Scanner constructor invoca-
tion, can throw a Fi LeNotFoundException, which is a kind of IOException.

To create a stream connected to the keyboard, use
new Scanner (System.in)

(continued)

©2006 Pearson Addison-Wesley. All ights reserved 10-37

Methods in the Class Scanner
(Part 2 of 11)

Display 10.6 Methods in the Class Scanner

public Scanner(File fileObject)

The File class will be covered in the section entitled “The File Class,” later in this chapter. We discuss it
here so that you will have a more complete reference in this display, but you can ignore this entry until
after you've read that section

If you want to create a stream using a file name, you can use

new Scanner(new File(file_Name))

public int nextInt()
Returns the next token as an int, provided the next token is a well-formed string representation of an
int.
Throws a NoSuchELementException if there are no more tokens.
Throws an TnputMismatchException if the next token is not a well-formed string representation of an
int.
Throws an T11egalStateException if the Scanner stream s closed.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 10-38

Methods in the Class Scanner
(Part 3 of 11)

Display 10.6 Methods in the Class Scanner

public boolean hasNextInt()
Returns true if the next token is a well-formed string representation of an int; otherwise returns false

Throws an T1legalStateException if the Scanner stream is closed.

public long nextLong()
Returns the next token as a Long, provided the next token is a well-formed string representation of a
Tong
Throws a NoSuchE LementException if there are no more tokens.
Throws an InputMismatchException if the next token is not a well-formed string representation of a
Long
Throws an I1legalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. All ights reserved 10-39

Methods in the Class Scanner
(Part 4 of 11)

Display 10.6 Methods in the Class Scanner

public boolean hasNextLong()
Returns true if the next token is a well-formed string representation of a Long; otherwise retums false.

Throws an I1legalStateException if the Scanner stream is closed.

public byte nextByte()
Returns the next token as a byte, provided the next token is a well-formed string representation of a
byte.
Throws 2 NoSuchE LementExcept:ion if there are no more tokers.
Throws an InputMismatchException if the next token is ot a well-formed string representation of a
byte.
Throws an T11egalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-40

Methods in the Class Scanner
(Part 5 of 11)

Display 10.6 Methods in the Class Scanner

public boolean hasNextByte()
Returns true if the next token is a well-formed string representation of a byte; otherwise retums false

Throws an T1legalStateException if the Scanner stream is closed.

public short nextShort()
Returns the next token as a short, provided the next token is a well-formed string representation of a
short.
Throws a NoSuchE LementException if there are no more tokens.
Throws an InputMismatchException if the next token is not a well-formed string representation of a
short.
Throws an T1legalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. All ights resarved 1041

Methods in the Class Scanner
(Part 6 of 11)

Display 10.6 Methods in the Class Scanner

public boolean hasNextShort()
Returns true if the next token is a well-formed string representation of a short; otherwise returns
false.

Throws an T1legalStateException if the Scanner stream is closed.

public double nextDouble()
Returns the next token as a double, provided the next token is a well-formed string representation of a
double.
Throws a NoSuchElementException if there are no more tokens.
Throws an TnputMismatchException if the next token is ot a well-formed string representation of a
double.
Throws an T1legalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 1042

5/24/12

Methods in the Class Scanner
(Part 7 of 11)

Display Methods in the Class Scanner

public boolean hasNextDouble()

Returns true if the next token is a well-formed string representation of an double; otherwise returns
false.

Throws an I1legalStateException if the Scanner stream is closed.

public float nextFloat()

Returns the next token s a float, provided the next token s a well-formed string representation of a
float.

Throws a NoSuchE LementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation of a
float.

Throws an T1legalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1043

Methods in the Class Scanner
(Part 8 of 11)

Methods in the Class Scanner

Display

public boolean hasNextFloat()

Retums true if the next token is a well-formed string representation of an loat; otherwise returns
false

Throws an I1legalStateException if the Scanner stream is closed.

public String next()
Returns the next token.
Throws a NoSuchElementException if there are no more tokens.
Throws an T11egalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 1044

Methods in the Class Scanner
(Part 9 of 11)

.6 Methods in the Class Scanner

public boolean hasNext()
Retums true if there is another token. May wait for a next token to enter the stream.

Throws an T1legalStateException if the Scanner stream is closed.

public boolean nextBoolean()

Returns the next token as a boolean value, provided the next token is a well-formed string representa-
tion of a boolean.

Throws 2 NoSuchE LementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation of a
boolean value.

Throws an T1legalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1045

Methods in the Class Scanner
(Part 10 of 11)

Display 10.6 Methods in the Class Scanner

public boolean hasNextBoolean()

Returns true if the next token is a well-formed string representation of a boolean value; otherwise
returns false.

Throws an T1legalStateException if the Scanner stream is closed.

public String nextLine()

Returns the rest of the current input line. Note that the line terminator "\n" is read and discarded; it is
not included in the string returned.

Throws 2 NoSuchE LementException if there are no more lines.
Throws an I1legalStateException if the Scanner stream is closed.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1046

Methods in the Class Scanner
(Part 11 of 11)

Display 10.6 Methods in the Class Scanner

public boolean hasNextLine()
Returns true if there is a next line. May wait for a next line to enter the stream.

Throws an T1legalStateException if the Scanner stream is closed.

public Scanner useDelimiter(String newDelimiter);

Changes the delimiter for input so that newDe imiter will be the only delimiter that separates words or
numbers. See the subsection "Other Input Delimiters” in Chapter 2 for the details. (You can use this
method to set the delimiters to a more complex pattern than just a single string, but we are not covering
that.)

Returns the calling object, but we have always used it as a void method.

©2006 Pearson Addison-Wesley. Al ights reserved 1047

Use Java’ s Doc to ID Exceptions

+ Google “java documentation Scanner”

 The javasoft people keep good on-line
documentation.

* There are a lot of methods. Notice the
“throws” statements

©2006 Pearson Addison-Wesley. Al rights reserved 1048

5/24/12

Reading From a Text File Using
BufferedReader

* The class Buf feredReader is a stream class that
can be used to read from a text file
— An object of the class Buf feredReader has the methods
read and readLine
* A program using Buf feredReader, like one using
PrintWriter, will start with a set of import
statements:
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

©2006 Pearson Addison-Wesley. Al ights reserved 10-49

Reading From a Text File Using
BufferedReader

* Like the classes PrintWriter and Scanner,
BufferedReader has no constructor that takes a
file name as its argument

— It needs to use another class, FileReader, to convert the
file name to an object that can be used as an argument to
its (the Buf feredReader) constructor

* A stream of the class Buf feredReader is created
and connected to a text file as follows:

BufferedReader readerObject;

readerObject = new BufferedReader (new
FileReader (FileName)) ;

— This opens the file for reading

©2006 Pearson Addison-Wesley. Al rights reserved 10-50

Reading From a Text File

« After these statements, the methods read
and readLine can be used to read from
the file
— The readLine method is the same method
used to read from the keyboard, but in this case
it would read from a file

— The read method reads a single character, and
returns a value (of type int) that corresponds to
the character read

— Since the read method does not return the
character itself, a type cast must be used:

char next = (char) (readerObject.read());

©2006 Pearson Addison-Wesley. Al ights reserved 1051

Reading Input from a Text File Using
BufferedReader (Part 1 of 3)

Display 10.7 Reading Input from a Text File Using BufferedReader

import java.io.BufferedReader;
import java.io.FileReader;

import java.io.FileNotFoundException;
import java.io.IOException;

swne

public class TextFileInputDemo
public static void main(String[] args)

9 try

10 {

11 BufferedReader inputStream =

12 new BufferedReader(new FileReader("morestuff2.txt"));

13 String line = inputStream.readLine();
14 System.out.println(
15 "The first line read from the file is:");
16 System.out.println(line);
(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1052

Reading Input from a Text File Using
BufferedReader (Part 2 of 3)

Display 1.7 Reading Input from a Text File Using BufferedReader

17

18 line = inputStrean. readLine();

19 System.out.println(

20 "The second line read from the file is:");

21 System.out.printin(line);

22 inputStream.close();

23 1

2 catch(FileNotFoundException)

25

26 System.out.println("File morestuff2.txt was not found");

27 System.out.println(or could not be opened.";

28 ¥

29 catch(TOException e)

30

31 System.out.println("Error reading from morestuff2.txt.");

32 3

33 ¥

34}

(continued)

©2006 Pearson Addison-Wesley. All rights reserved 1053

Reading Input from a Text File Using
BufferedReader (Part 3 of 3)

Display 10.7 Reading Input from a Text File Using Buf feredReader

File morestuff2.txt

123
Jack jump over
the candle stick.

SCREEN OUTPUT

The first line read from the file is:
123

The second line read from the file is:
Jack jump over

©2006 Pearson Addison-Wesley. Al rights reserved 10-54

Reading From a Text File

* A program using a Buf feredReader
object in this way may throw two kinds of
exceptions
— An attempt to open the file may throw a

FileNotFoundException (which in this case
has the expected meaning)

— An invocation of readLine may throw an
IOException

— Both of these exceptions should be handled

©2006 Pearson Addison-Wesley. Al ights reserved 10-55

5/24/12

Some Methods of the Class
BufferedReader (Part 1 of 2)

Some Methods of the Class BufferedReader

BufferedReader and FileReader are in the java. io package.
public BufferedReader(Reader readerObject)

Thisis the only constructor you are likely to need. There is no constructor that accepts a file name as an
argument. If you want to create a stream using a file name, you use

new BufferedReader(new FileReader (file_Name))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor invoca-
tion, can throw a FileNotFoundException, which is a kind of IOException.

The File class will be covered in the section entitled “The File Class.” We discuss it here so that you will
have a more complete reference in this display, but you can ignore the following reference to the class
File until after you've read that section.

If you want to create a stream using an object of the class File, you use

new BufferedReader(new FileReader (File_Object))

When used in this way, the FileReader constructor, and thus the Buf feredReader constructor invoca-
tion, can throw a Fi leNotFoundException, which is a kind of IOException.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 10-56

Some Methods of the Class
BufferedReader (Part 2 of 2)

play 1.5 Some Methods of the Class BufferedReader

public String readline() throws IOException
Reads a line of input from the input stream and returns that line. f the read goes beyond the end of the
file, nulLis retumed. (Noe that an EOFException is not thrown af the end of a fle. The end of file is
signaled by returning nulL.)

public int read() throws TOException
Reads a single character from the input stream and returns that character as an int value. I the read goes
beyond the end of the file, then 1 is retured. Note that the value i returned as an <nt. To obtain a
char, you must perform a type cast on the value returned. The end of a il issignaled by returning 1.
Call of the "real” characters retum a postive integer.)

public long skip(long m) throws IOException
Skips n characters

public void close() throws IOException

Closes the stream’s connection to a fle

©2006 Pearson Addison-Wesley. Al ights reserved 10-57

Reading Numbers

* Unlike the Scanner class, the class
BufferedReader has no methods to read a
number from a text file

— Instead, a number must be read in as a string, and then
converted to a value of the appropriate numeric type using
one of the wrapper classes

— Toread in a single number on a line by itself, first use the
method readLine, and then use Integer.parselnt,
Double.parseDouble, etc. to convert the string into a
number

— If there are multiple numbers on a line,
StringTokenizer can be used to decompose the string
into tokens, and then the tokens can be converted as
described above

©2006 Pearson Addison-Wesley. Al ights reserved 10-58

Testing for the End of a Text File

* The method readLine of the class
BufferedReader returns null when it
tries to read beyond the end of a text file
— A program can test for the end of the file by

testing for the value null when using
readLine

» The method read of the class
BufferedReader returns -1 when it tries
to read beyond the end of a text file
— A program can test for the end of the file by

testing for the value -1 when using read

©2006 Pearson Addison-Wesley. Al ights reserved 10-59

Path Names

* When a file name is used as an
argument to a constructor for opening
afile, it is assumed that the file is in
the same directory or folder as the one
in which the program is run

« If it is not in the same directory, the full
or relative path name must be given

©2006 Pearson Addison-Wesley. Al rights reserved 10-60

10

5/24/12

Path Names

» A path name not only gives the name
of the file, but also the directory or
folder in which the file exists

A full path name gives a complete path
name, starting from the root directory

* A relative path name gives the path to
the file, starting with the directory in
which the program is located

©2006 Pearson Addison-Wesley. Al ights reserved 1061

Path Names

» The way path names are specified depends
on the operating system
— A typical UNIX path name that could be used as a
file name argument is
"/user/sallyz/data/data. txt"
— A BufferedReader input stream connected to
this file is created as follows:
BufferedReader inputStream =
new BufferedReader (new

FileReader ("/user/sallyz/data/data.txt"));

©2006 Pearson Addison-Wesley. Al rights reserved 1062

Path Names

* The Windows operating system specifies path names
in a different way
— A typical Windows path name is the following:
C:\dataFiles\goodData\data. txt
— A BufferedReader input stream connected to this file is
created as follows:

BufferedReader inputStream = new
BufferedReader (new FileReader
("C:\\dataFiles\\goodData\\data. txt")) ;

— Note that in Windows \\ must be used in place of \, since a
single backslash denotes an the beginning of an escape
sequence

©2006 Pearson Addison-Wesley. Al ights reserved 10-63

Path Names

* A double backslash (\\) must be used for a
Windows path name enclosed in a quoted
string
— This problem does not occur with path names

read in from the keyboard

» Problems with escape characters can be
avoided altogether by always using UNIX
conventions when writing a path name
— A Java program will accept a path name written

in either Windows or Unix format regardless of
the operating system on which it is run

©2006 Pearson Addison-Wesley. Al ights reserved 1064

Nested Constructor Invocations

» Each of the Java I/O library classes
serves only one function, or a small
number of functions
— Normally two or more class constructors

are combined to obtain full functionality

» Therefore, expressions with two
constructors are common when
dealing with Java I/O classes

©2006 Pearson Addison-Wesley. Al ights reserved 10-65

Nested Constructor Invocations

new BufferedReader (new FileReader ("stuff.txt"))

* Above, the anonymous FileReader object
establishes a connection with the stuff. txt file
— However, it provides only very primitive methods for input

* The constructor for Buf feredReader takes this
FileReader object and adds a richer collection of
input methods

— This transforms the inner object into an instance variable
of the outer object

©2006 Pearson Addison-Wesley. Al rights reserved 10-66

11

System. in, System.out, and
System.err

* The standard streams System. in, System.out,
and System. err are automatically available to
every Java program

— System.out is used for normal screen output
- System.err is used to output error messages to the
screen

* The System class provides three methods (setIn,
setOut, and setErr) for redirecting these
standard streams:

public static void setIn(InputStream inStream)
public static void setOut(PrintStream outStream)
public static void setErr (PrintStream outStream)

©2006 Pearson Addison-Wesley. Al ights reserved 10-67

5/24/12

System. in, System.out, and
System.err

» Using these methods, any of the three
standard streams can be redirected
— For example, instead of appearing on the
tsﬂlcreen, error messages could be redirected to a
e
* In order to redirect a standard stream, a new
stream object is created

— Like other streams created in a program, a
stream object used for redirection must be
closed after I/O is finished

— Note, standard streams do not need to be closed

©2006 Pearson Addison-Wesley. Al rights reserved 10-68

System. in, System.out, and
System.err

* Redirecting System.err:

public void getInput()
{

PrintStream errStream = null;
try
{
errStream = new PrintStream(new
FileOuptputStream("errMessages.txt"));
System.setErr (errStream) ;
. //Set up input stream and read

©2006 Pearson Addison-Wesley. Al ights reserved 10-69

System. in, System.out, and
System.err

catch (FileNotFoundException e)
{
System.err.println("Input file not found");
}
finally
{

errStream.close() ;
}
}

See RedirectionDemo.java

©2006 Pearson Addison-Wesley. Al ights reserved 1070

The File Class

* The File class is like a wrapper class for

file names

— The constructor for the class File takes a
name, (known as the abstract name) as a string
argument, and produces an object that
represents the file with that name

— The File object and methods of the class File
can be used to determine information about the
file and its properties

— See FileClassDemo.java

©2006 Pearson Addison-Wesley. Al ights reserved 1071

Some Methods in the Class File
(Part 1 of 5)

Display 10,12 Some Methods in the Class File

Fileisin the java. io package.
public File(String File_Name)

Constructor. file_Name can be either a full or a relative path name (which includes the case of a simple file
name). File_Name is referred to as the abstract path name.

public boolean exists()

Tests whether there is a file with the abstract path name.

public boolean canRead()

Tests whether the program can read from the file. Returns true if the file named by the abstract path
name exists and is readable by the program; otherwise retums false

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 1072

12

Some Methods in the Class File
(Part 2 of 5)

Display 0.1z Some Methods in the Class File

public boolean setReadOnly()

Sets the file represented by the abstract path name to be read only. Returns true if successful; otherwise
veturns false.

public boolean canWrite()

Tests whether the program can write to the file. Returns true if the file named by the abstract path name
exists and is writable by the program; otherwise retums false.

public boolean delete()
Tries to delete the file or directory named by the abstract path name. A directory must be empty to be
Yemoved. Returns true if it was able to delete the file or directory. Returns false if it was unable to

delete the file or directory.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1073

5/24/12

Some Methods in the Class File
(Part 3 of 5)

Display 1.1z Some Methods in the Class File

public boolean createNewFile() throws IOException

Creates a new empty file named by the abstract path name, provided that a file of that name does not
already exist. Returns true if successful, and returns false otherwise.

public String getName()

Returns the last name in the abstract path name (that is, the simple file name). Returns the empty string if
the abstract path name is the empty string.

public String getPath()
Retums the abstract path name as a String value.

public boolean renameTo(File New_Name)
Renames the file represented by the abstract path name to New_Name. Returns true if successful; other-
wise returns false. New_Name can be a relative or absolute path name. This may require moving the fil.
Whether or not the file can be moved is system dependent

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 1074

Some Methods in the Class File
(Part 4 of 5)

Display 101z Some Methods in the Class File

public boolean isFile()

Retumns true if a fle exists that is named by the abstract path name and the file is a normal file; other-
wise returns false. The meaning of normal is system dependent. Any file created by a Java program is
guaranteed to be normal

public boolean isDirectory()

Retums true if a directory (folder) exists that is named by the abstract path name; otherwise returs

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1075

Some Methods in the Class File
(Part 5 of 5)

Display 10.12 Some Methods in the Class File

public boolean mkdir()

Makes a directory named by the abstract path name. Will not create parent directories. See mkdirs
Returns true if successful; otherwise retumns false.

public boolean mkdirs()
Makes a directory named by the abstract path name. Will create any necessary but nonexistent parent
directories. Returns true if successful; otherwise returns false. Note that i it fails, then some of the par-

ent directories may have been created.

public long length()

Returns the length in bytes of the file named by the abstract path name. If the file does not exist or the
abstract path name names a directory, then the value retumed is not specified and may be anything.

©2006 Pearson Addison-Wesley. Al ights reserved 1076

Binary Files

. Binar¥)files store data in the same format
used by computer memory to store the
values of variables

— No conversion needs to be performed when a
value is stored or retrieved from a binary file

» Java binary files, unlike other binary
language files, are portable

— A binary file created by a Java program can be
moved from one computer to another

— These files can then be read by a Java program,
but only by a Java program

©2006 Pearson Addison-Wesley. Al ights reserved 1077

Writing Simple Data to a Binary File

* The class ObjectOutputStream is a stream
class that can be used to write to a binary file
— An object of this class has methods to write strings,
values of primitive types, and objects to a binary file
* A program using ObjectOutputStream needs to
import several classes from package java.io:
import java.io.ObjectOutputStream;
import java.io.FileOutStream;
import java.io.IOException;

©2006 Pearson Addison-Wesley. Al rights reserved 1078

13

5/24/12

Opening a Binary File for Output

* An ObjectOutputStream objectis
created and connected to a binary file as
follows:

ObjectOutputStream outputStreamName = new
ObjectOutputStream (new
FileOutputStream(FileName)) ;

— The constructor for FileOutputStream may
throw a FileNotFoundException

— The constructor for ObjectOutputStream may
throw an IOException

— Each of these must be handled

©2006 Pearson Addison-Wesley. Al ights reserved 1079

Opening a Binary File for Output

» After opening the file, ObjectOutputStream
methods can be used to write to the file
— Methods used to output primitive values include
writeInt, writeDouble, writeChar, and
writeBoolean
« UTFis an encoding scheme used to encode
Unicode characters that favors the ASCII character
set
— The method writeUTF can be used to output values of
type String
* The stream should always be closed after writing
» See BinaryOutputDemo.java

©2006 Pearson Addison-Wesley. Al rights reserved 10-80

Some Methods in the Class
ObjectOutputStream (Part 1 of 5)

Display 10.15 Some Methods in the Class ObjectOutputStream

ObjectOutputStreamand FileOutputStrean are in the java. io package.

public ObjectOutputStream(OutputStream streambject)

There i no constructor that takes a file name as an argument. If you want to create a stream using a file
name, you use

new ObjectOutputStream(new FileOutputStream(File_Name))

This creates a blank file. If there already is a file named File_Name, then the old contents of the file are
lost.
If you want to create a stream using an object of the class File, you use

new ObjectOutputStream(new Fil trean(File_Object))
The constructor for FileOutputStream may throw a FileNotFoundException, which is a kind of
TOException. If the FileOutputStrean constructor succeeds, then the constructor for ObjectOut~
putStrean may throw a different IOException.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-81

Some Methods in the Class
ObjectOutputStream (Part 2 of 5)

Display 10,15 Some Methods in the Class ObjectOutputStrean

public void writeInt(int n) throws IOException
Writes the int value n to the output stream

public void writeShort(short n) throws IOException
Writes the short value n to the output stream.

public void writeLong(long n) throws IOException
Writes the long value n to the output stream.

public void writeDouble(double x) throws IOException
Writes the double value x to the output stream.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1082

Some Methods in the Class
ObjectOutputStream (Part 3 of 5)

Some Methods in the Class ObjectOutputStream

public void writeFloat(float x) throws IOException
Writes the Float value x to the output stream.

public void writeChar(int n) throws IOException
Writes the char value n to the output stream. Note that it expects its argument to be an int value. How-

ever, if you simply use the char value, then Java will automatically type cast it to an int value. The fol-
lowing are equivalent

outputStream.writeChar((int)'A");

and

outputStream.writeChar('A');

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-83

Some Methods in the Class
ObjectOutputStream (Part 4 of 5)

y Some Methods in the Class ObjectOutputStream

public void writeBoolean(boolean b) throws IOException
Writes the boolean value b to the output stream.

public void writeUTF(String aString) throws IOException
Writes the String value aString to the output stream. UTF refers to a particular method of encoding
the string. To read the string back from the file, you should use the method readUTF of the class
ObjectInputStrean.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 1084

14

Some Methods in the Class
ObjectOutputStream (Part 5 of 5)

1, Some Methods in the Class ObjectOutputStream

public void writeObject(Object anObject) throws IOException

Wites its argument to the output stream. The object argument should be an object of a serializable class,
a concept discussed later in this chapter. Throws various I0Exceptions.

public void close() throws IOException
Closes the stream'’s connection to a file. This method calls Flush before closing the file.
public void Flush() throws IOException

Flushes the output stream. This forces an actual physical write to the file of any data that has been buff-
ered and not yet physically written to the file. Normally, you should not need to invoke Lush.

©2006 Pearson Addison-Wesley. Al ights reserved 10-85

5/24/12

Reading Simple Data from a Binary File

» The class ObjectInputStream is a stream class
that can be used to read from a binary file
— An object of this class has methods to read strings, values
of primitive types, and objects from a binary file
* A program using ObjectInputStream needs to
import several classes from package java.io:
import java.io.ObjectInputStream;
import java.io.FileInputStream;
import java.io.IOException;

©2006 Pearson Addison-Wesley. Al rights reserved 10-86

Opening a Binary File for Reading

* An ObjectInputStream objectis created
and connected to a binary file as follows:
ObjectInputStream inStreamName = new
ObjectInputStream(new
FileInputStream(FileName)) ;
— The constructor for FileInputStream may
throw a FileNotFoundException
— The constructor for ObjectInputStream may
throw an IOException
— Each of these must be handled

©2006 Pearson Addison-Wesley. Al ights reserved 10-87

Opening a Binary File for Reading

» After opening the file, ObjectInputStream
methods can be used to read to the file
— Methods used to input primitive values include readInt,
readDouble, readChar, and readBoolean
— The method readUTF is used to input values of type
String
« If the file contains multiple types, each item type
must be read in exactly the same order it was
written to the file
» The stream should be closed after reading

» See BinarylnputDemo.java

©2006 Pearson Addison-Wesley. Al ights reserved 10-88

Some Methods in the Class
ObjectInputStream (Part 1 of 5)

Display 10.15 Some Methods in the Class ObjectInputStream

The classes ObjectTnputStream and FileInputStream are in the java. io package.

public ObjectInputStream(InputStrean streamObject)

There i no constructor that takes a file name as an argument. If you want to create a stream using a file
name, you use

new ObjectInputStrean(new FileInputStrean(file_Name))
Alternatively, you can use an object of the class File in place of the File_Name, as follows:

new ObjectInputStream(new FileInputStream(file_Object))
The constructor for FileInputStream may thow a FileNotFoundException, which is a kind of

T0Exception. If the FileInputStream constructor succeeds, then the constructor for ObjectInput—
Strean may throw a different IOException,

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-89

Some Methods in the Class
ObjectInputStream (Part 2 of 5)

5 Some Methods in the Class ObjectInputStream

public int readInt() throws IOException

Reads an int value from the input stream and returns that int value. If readInt tries to read a value
from the file and that value was not written using the method wr1 teInt of the class ObjectOutput-
Stream (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown,

public int readShort() throws IOException

Reads a short value from the input stream and retums that short value. If readShort tries to read a
value from the file and that value was not written using the method wri teShort of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException s thrown.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 10-90

15

5/24/12

Some Methods in the Class
ObjectInputStream (Part 3 of 5)

‘Some Methods in the Class ObjectInputStream

public long readLong() throws IOException

Reads a Long value from the input stream and returns that Long value. If readLong tries to read a value
from the file and that value was not written using the method wr1teLong of the class ObjectOutput-
Stream (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

public double readDouble() throws IOException

Reads a doubTe value from the input stream and returns that doube value. If readDouble tries to read.
a value from the file and that value was not written using the method wri teDouble of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

public float readFloat() throws IOException

Reads a Float value from the input stream and returns that Float value. If readFloat tries to read a
value from the file and that value was not written using the method wri teFloat of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 1091

Some Methods in the Class
ObjectInputStream (Part 4 of 5)

Some Methods in the Class ObjectInputStream

public char readChar() throws IOException

Reads a char value from the input stream and returns that char value. If readChar tries to read a value
from the file and that value was not written using the method writeChar of the class ObjectOutput—
Strean (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

public boolean readBoolean() throws IOException

Reads a boolean value from the input stream and returns that boolean value. If readBoolean tries to
vead a value from the file and that value was not written using the method wr-i teBoolean of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 10-92

Some Methods in the Class
ObjectInputStream (Part 5 of 5)

‘Some Methods in the Class ObjectInputStream

public String readUTF() throws IOException

Reads a String value from the input stream and returns that String value. If readUTF tries to read a
value from the file and that value was not written using the method writeUTF of the class ObjectOut—
putStrean (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

Object readObject() throws ClassNotFoundException, IOException

Reads an object from the input stream. The object read should have been written using writeObject of
the class ObjectOutputStrean. Throws a ClassNotFoundException if a serialized object cannot be
found. If an attempt is made to read beyond the end of the file, an EOFException is thrown. May throw
various other TOExceptions.

public int skipBytes(int n) throws IOException
Skips n bytes
public void close() throws IOException

Closes the stream’s connection to a file

©2006 Pearson Addison-Wesley. Al ights reserved 10-93

Checking for the End of a Binary File the
Correct Way

* All of the ObjectInputStream methods

that read from a binary file throw an

EOFException when trying to read beyond

the end of a file

— This can be used to end a loop that reads all the
data in a file

Note that different file-reading methods

check for the end of a file in different ways

— Testing for the end of a file in the wrong way can
cause a program to go into an infinite loop or
terminate abnormally

+ See EOFDemo.java

©2006 Pearson Addison-Wesley. Al ights reserved 1094

Binary I/O of Objects

» Objects can also be input and output from a binary
file

— Use the writeObject method of the class
ObjectOutputStream to write an object to a binary file

— Use the readObject method of the class
ObjectInputStream to read an object from a binary file

— In order to use the value returned by readObject as an
object of a class, it must be type cast first:

SomeClass someObject =
(SomeClass) objectInputStream.readObject () ;

©2006 Pearson Addison-Wesley. Al ights reserved 10-95

Binary I/O of Objects

« Itis best to store the data of only one class type in
any one file
— Storing objects of multiple class types or objects of one
class type mixed with primitives can lead to loss of data
« In addition, the class of the object being read or
written must implement the Serializable
interface

— The serializable interface is easy to use and requires
no knowledge of interfaces

— Aclass that implements the serializable interface is
said to be a serializable class

©2006 Pearson Addison-Wesley. Al rights reserved 10-96

16

The Serializable Interface

In order to make a class serializable, simply
add implements Serializable to the
heading of the class definition

public class SomeClass implements Serializable
When a serializable class has instance
variables of a class type, then all those
classes must be serializable also

— A class is not serializable unless the classes for

all instance variables are also serializable for all
levels of instance variables within classes

* See ObjectlODemo java

©2006 Pearson Addison-Wesley. Al ights reserved 10-97

5/24/12

Array Objects in Binary Files

» Since an array is an object, arrays can also
be read and written to binary files using
readObject and writeObject
— If the base type is a class, then it must also be
serializable, just like any other class type

— Since readObject returns its value as type
Object (like any other object), it must be type
cast to the correct array type:

SomeClass[] someObject =
(SomeClass[])objectInputStream.readObject () ;

+ See ArraylODemo.java

©2006 Pearson Addison-Wesley. Al rights reserved 10-98

Random Access to Binary Files

» The streams for sequential access to
files are the ones most commonly
used for file access in Java

* However, some applications require
very rapid access to records in very
large databases

— These applications need to have random
access to particular parts of a file

©2006 Pearson Addison-Wesley. Al ights reserved 10-99

Reading and Writing to the Same File

» The stream class RandomAccessFile, which is in
the java. io package, provides both read and
write random access to a file in Java

« A random access file consists of a sequence of
numbered bytes

— There is a kind of marker called the file pointer that is
always positioned at one of the bytes

— All reads and writes take place starting at the file pointer
location

— The file pointer can be moved to a new location with the
method seek

©2006 Pearson Addison-Wesley. Al ights reserved 10-100

Reading and Writing to the Same File

» Although a random access file is byte
oriented, there are methods that allow for
reading or writing values of the primitive
types as well as string values to/from a
random access file
— These include readInt, readDouble, and

readUTF for input, and writeInt,
writeDouble, and writeUTF for output

— It does not have writeObject or readObject
methods, however

©2006 Pearson Addison-Wesley. Al ights reserved 10-101

Opening a File

» The constructor for RandomAccessFile
takes either a string file name or an object of
the class File as its first argument

» The second argument must be one of four
strings:

- "rw", meaning the code can both read and write
to the file after it is open

- "r", meaning the code can read form the file,
but not write to it

- "rws" or "rwd" (See Table of methods from
RandomAccessFile)

©2006 Pearson Addison-Wesley. Al rights reserved 10-102

17

Pitfall: A Random Access File Need Not
Start Empty

* If the file already exists, then when it is
opened, the length is not reset to 0, and the
file pointer will be positioned at the start of
the file

— This ensures that old data is not lost, and that
the file pointer is set for the most likely position
for reading (not writing)

» The length of the file can be changed with
the setLength method

— In particular, the setLength method can be
used to empty the file

» See RandomAccessDemo.java

©2006 Pearson Addison-Wesley. Al ights reserved 10-103

Some Methods of the Class RandomAccessFile
(Part 1 of 7)

Display 10.21 Some Methods of the Class RandomAccessFile

The class RandomAccessFile is in the java. io package.

public RandomAccessFile(String fileName, String mode)
public RandomAccessFile(File FileObject, String mode)

Opens the file, does not delete data already in the file, but does position the file pointer at the first
(zeroth) location
The mode must be one of the following:
"1 Open for reading only.
"rw" Open for reading and writing.
"rws"" Same as " rw", and also requires that every update to the file's content or metadata be written
synchronously to the underlying storage device.
"rwd" Same as "rw", and also requires that every update to the file's content be written synchro-
nously to the underlying storage device.
“rws" and "rwd" are not covered in this book.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 10-104

Some Methods of the Class RandomAccessFile
(Part 2 of 7)

Display 10.21 Some Methods of the Class RandomAccessFile

public long getFilePointer() throws IOException
Returns the current location of the file pointer. Locations are numbered starting with 0.

public void seek(long location) throws IOException
Moves the file pointer to the specified location.

public long length() throws IOException
Returns the length of the file.

public void setLength(long newLength) throws IOException
Sets the length of this file.
If the present length of the file as returned by the Length method is greater than the newLength argu-
‘ment, then the file will be truncated. In this case, if the file pointer location as retumed by the getFile—
Pointer method is greater than newLength, then after this method returns, the fle pointer location will
be equal to newLength.
If the present length of the file as returned by the Length method is smaller than newLength, then the
file will be extended. In this case, the contents of the extended portion of the file are not defined.

(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-105

Some Methods of the Class RandomAccessFile
(Part 3 of 7)

21 Some Methods of the Class RandomAccessFile

public void close() throws IOException
Closes the stream’s connection to a file.

public void write(int b) throws IOException
Wites the specified byte to the file.

public void write(byte[] a) throws IOException
Writes a. Length bytes from the specified byte array to the file.

public final void writeByte(byte b) throws IOException
Wites the byte b to the file.

public final void writeShort(short n) throws IOException

Writes the short n to the file
(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-106

Some Methods of the Class RandomAccessFile
(Part4 of 7)

Display 10.21 Some Methods of the Class RandomAccessFile

public final void writeInt(int n) throws IOException
Writes the int n to the file.

public final void writeLong(long n) throws IOException
Writes the Long n to the file.

public final void writeDouble(double d) throws IOException
Wites the double d to the file.

public final void writeFloat(float f) throws IOException

Wites the Float f to the file.
(continued)

©2006 Pearson Addison-Wesley. Al ights reserved 10-107

Some Methods of the Class RandomAccessFile
(Part 5 of 7)

Display 1021 Some Methods of the Class RandomAccessFile

public final void writeChar(char c) throws IOException
Wiites the char ¢ to the file.

public final void writeBoolean(boolean b) throws IOException
Wites the boolean b to the file,

public final void writeUTF(String s) throws IOException
Wites the String s to the file.

public int read() throws IOException
Reads a byte of data from the file and retums it as an integer in the range o to 2s5.

public int read(byte[] a) throws IOException

Reads a. Length bytes of data from the file into the array of bytes a. Returns the number of bytes read or
-1 if the end of the file is encountered.

(continued)

©2006 Pearson Addison-Wesley. Al rights reserved 10-108

5/24/12

18

Some Methods of the Class RandomAccessFile
(Part 6 of 7)

Display 10.21 Some Methods of the Class RandomAccessFile

public final byte readByte() throws IOException
Reads a byte value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final short readShort() throws IOException
Reads a short value from the file and retums that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final int readInt() throws IOException
Reads an int value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final long readLong() throws IOException
Reads a Long value from the file and returns that value. If an attempt is made to read beyond the end of

the file, an EOFException is thrown.

(continued)

©2006 Pearson Addison-Wesley. All ights reserved 10-109

5/24/12

Some Methods of the Class RandomAccessFile
(Part 7 of 7)

Display 10.21 Some Methods of the Class RandomAccessFile

public final double readDouble() throws IOException
Reads a double value from the file and returns that value. If an attempt is made to vead beyond the end
of the file, an EOFException is thrown.

public final float readFloat() throws IOException
Reads a Float value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException s thrown.

public final char readChar() throws IOException
Reads a char value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final boolean readBoolean() throws IOException
Reads a boolean value from the file and returns that value. If an attempt is made to read beyond the end
of the file, an EOFException is thrown.

public final String readUTF() throws IOException

Reads a String value from the file and returns that value. If an attempt is made to read beyond the end
of the file, an EOFException is thrown.

©2006 Pearson Addison-Wesley. Al rights reserved 10-110

19

