
5/24/12	

1	

Slides prepared by Rose Williams, Binghamton University

Chapter 8

Polymorphism
and Abstract
Classes

© 2006 Pearson Addison-Wesley. All rights reserved 8-2

Introduction to Polymorphism

•  There are three main programming
mechanisms that constitute object-oriented
programming (OOP)
–  Encapsulation
–  Inheritance
–  Polymorphism

•  Polymorphism is the ability to associate
many meanings to one method name
–  It does this through a special mechanism known

as late binding or dynamic binding

© 2006 Pearson Addison-Wesley. All rights reserved 8-3

Introduction to Polymorphism

•  Inheritance allows a base class to be
defined, and other classes derived from it
–  Code for the base class can then be used for its

own objects, as well as objects of any derived
classes

•  Polymorphism allows changes to be made
to method definitions in the derived classes,
and have those changes apply to the
software written for the base class

© 2006 Pearson Addison-Wesley. All rights reserved 8-4

Late Binding

•  The process of associating a method
definition with a method invocation is called
binding

•  If the method definition is associated with its
invocation when the code is compiled, that
is called early binding

•  If the method definition is associated with its
invocation when the method is invoked (at
run time), that is called late binding or
dynamic binding

© 2006 Pearson Addison-Wesley. All rights reserved 8-5

Late Binding

•  Java uses late binding for all methods
(except private, final, and static methods)

•  Because of late binding, a method can be
written in a base class to perform a task,
even if portions of that task aren't yet
defined

•  For an example, the relationship between a
base class called Sale and its derived class
DiscountSale will be examined

© 2006 Pearson Addison-Wesley. All rights reserved 8-6

The Sale and DiscountSale Classes

•  The Sale class contains two instance
variables
–  name: the name of an item (String)
–  price: the price of an item (double)

•  It contains three constructors
–  A no-argument constructor that sets name to
"No name yet", and price to 0.0

–  A two-parameter constructor that takes in a
String (for name) and a double (for price)

–  A copy constructor that takes in a Sale object
as a parameter

5/24/12	

2	

© 2006 Pearson Addison-Wesley. All rights reserved 8-7

The Sale and DiscountSale Classes

•  The Sale class also has a set of accessors
(getName, getPrice), mutators (setName,
setPrice), overridden equals and toString
methods, and a static announcement method

•  The Sale class has a method bill, that
determines the bill for a sale, which simply returns
the price of the item

•  It has two methods, equalDeals and lessThan,
each of which compares two sale objects by
comparing their bills and returns a boolean value

© 2006 Pearson Addison-Wesley. All rights reserved 8-8

The Sale and DiscountSale Classes

•  The DiscountSale class inherits the instance
variables and methods from the Sale class

•  In addition, it has its own instance variable,
discount (a percent of the price), and its own
suitable constructor methods, accessor method
(getDiscount), mutator method (setDiscount),
overriden toString method, and static
announcement method

•  The DiscountSale class has its own bill
method which computes the bill as a function of the
discount and the price

© 2006 Pearson Addison-Wesley. All rights reserved 8-9

The Sale and DiscountSale Classes

•  The Sale class lessThan method
–  Note the bill() method invocations:

public boolean lessThan (Sale otherSale)
{
 if (otherSale == null)
 {
 System.out.println("Error: null object");
 System.exit(0);
 }
 return (bill() < otherSale.bill());
}

© 2006 Pearson Addison-Wesley. All rights reserved 8-10

The Sale and DiscountSale Classes

•  The Sale class bill() method:

 public double bill()
 {
 return price;
 }

•  The DiscountSale class bill() method:

 public double bill()
 {
 double fraction = discount/100;
 return (1 - fraction) * getPrice();
 }

© 2006 Pearson Addison-Wesley. All rights reserved 8-11

•  Given the following in a program:
 . . .
Sale simple = new sale("floor mat", 10.00);
DiscountSale discount = new
 DiscountSale("floor mat", 11.00, 10);
 . . .
if (discount.lessThan(simple))
 System.out.println("$" + discount.bill() +
 " < " + "$" + simple.bill() +
 " because late-binding works!");
 . . .

–  Output would be:

$9.90 < $10 because late-binding works!

The Sale and DiscountSale Classes

© 2006 Pearson Addison-Wesley. All rights reserved 8-12

The Sale and DiscountSale Classes

•  In the previous example, the boolean expression
in the if statement returns true

•  As the output indicates, when the lessThan
method in the Sale class is executed, it knows
which bill() method to invoke
–  The DiscountSale class bill() method for discount,

and the Sale class bill() method for simple
•  Note that when the Sale class was created and

compiled, the DiscountSale class and its bill
() method did not yet exist
–  These results are made possible by late-binding

5/24/12	

3	

© 2006 Pearson Addison-Wesley. All rights reserved 8-13

Pitfall: No Late Binding for Static
Methods

•  When the decision of which definition of a
method to use is made at compile time, that
is called static binding
–  This decision is made based on the type of the

variable naming the object
•  Java uses static, not late, binding with

private, final, and static methods
–  In the case of private and final methods,

late binding would serve no purpose
–  However, in the case of a static method invoked

using a calling object, it does make a difference

© 2006 Pearson Addison-Wesley. All rights reserved 8-14

Pitfall: No Late Binding for Static
Methods

•  The Sale class announcement() method:

public static void announcement()
{
 System.out.println("Sale class");
}

•  The DiscountSale class announcement()
method:
public static void announcement()
{
 System.out.println("DiscountSale class");
}

© 2006 Pearson Addison-Wesley. All rights reserved 8-15

Pitfall: No Late Binding for Static
Methods

•  In the previous example, the the simple
(Sale class) and discount
(DiscountClass) objects were created

•  Given the following assignment:
simple = discount;

–  Now the two variables point to the same object
–  In particular, a Sale class variable names a
DiscountClass object

© 2006 Pearson Addison-Wesley. All rights reserved 8-16

•  Given the invocation:
simple.announcement();

–  The output is:

Sale class

•  Note that here, announcement is a static
method invoked by a calling object (instead
of its class name)
–  Therefore the type of simple is determined by

its variable name, not the object that it
references

Pitfall: No Late Binding for Static
Methods

© 2006 Pearson Addison-Wesley. All rights reserved 8-17

Pitfall: No Late Binding for Static
Methods

•  There are other cases where a static
method has a calling object in a more
inconspicuous way

•  For example, a static method can be
invoked within the definition of a nonstatic
method, but without any explicit class name
or calling object

•  In this case, the calling object is the implicit
this

© 2006 Pearson Addison-Wesley. All rights reserved 8-18

The final Modifier

•  A method marked final indicates that it
cannot be overridden with a new definition in
a derived class
–  If final, the compiler can use early binding with

the method

public final void someMethod() { . . . }

•  A class marked final indicates that it
cannot be used as a base class from which
to derive any other classes

•  Can be used for efficiency, but usually more
for security.

5/24/12	

4	

© 2006 Pearson Addison-Wesley. All rights reserved 8-19

•  If an appropriate toString method is defined for a
class, then an object of that class can be output
using System.out.println

Sale aSale = new Sale("tire gauge", 9.95);
System.out.println(aSale);

–  Output produced:

tire gauge Price and total cost = $9.95

•  This works because of late binding

Late Binding with toString

© 2006 Pearson Addison-Wesley. All rights reserved 8-20

Late Binding with toString

•  One definition of the method println takes a
single argument of type Object:

public void println(Object theObject)
{
 System.out.println(theObject.toString());
}
–  In turn, It invokes the version of println that takes a
String argument

•  Note that the println method was defined before
the Sale class existed

•  Yet, because of late binding, the toString method
from the Sale class is used, not the toString
from the Object class

© 2006 Pearson Addison-Wesley. All rights reserved 8-21

An Object knows the Definitions of its
Methods

•  The type of a class variable determines
which method names can be used with the
variable
–  However, the object named by the variable

determines which definition with the same
method name is used

•  A special case of this rule is as follows:
–  The type of a class parameter determines which

method names can be used with the parameter
–  The argument determines which definition of the

method name is used

© 2006 Pearson Addison-Wesley. All rights reserved 8-22

Upcasting and Downcasting

•  Upcasting is when an object of a derived class is
assigned to a variable of a base class (or any
ancestor class)

Sale saleVariable; //Base class
DiscountSale discountVariable = new
 DiscountSale("paint", 15,10); //Derived class
saleVariable = discountVariable; //Upcasting
System.out.println(saleVariable.toString());

•  Because of late binding, toString above uses the
definition given in the DiscountSale class

© 2006 Pearson Addison-Wesley. All rights reserved 8-23

Upcasting and Downcasting

•  Downcasting is when a type cast is performed from
a base class to a derived class (or from any
ancestor class to any descendent class)
–  Downcasting has to be done very carefully
–  In many cases it doesn't make sense, or is illegal:

discountVariable = //will produce
 (DiscountSale)saleVariable;//run-time error

discountVariable = saleVariable //will produce
 //compiler error

–  There are times, however, when downcasting is
necessary, e.g., inside the equals method for a class:

Sale otherSale = (Sale)otherObject;//downcasting

© 2006 Pearson Addison-Wesley. All rights reserved 8-24

Pitfall: Downcasting

•  It is the responsibility of the
programmer to use downcasting only
in situations where it makes sense
– The compiler does not check to see if

downcasting is a reasonable thing to do
•  Using downcasting in a situation that

does not make sense usually results in
a run-time error

5/24/12	

5	

© 2006 Pearson Addison-Wesley. All rights reserved 8-25

Tip: Checking to See if Downcasting is
Legitimate

•  Downcasting to a specific type is only
sensible if the object being cast is an
instance of that type or one of its
descendant types.
–  This is exactly what the instanceof operator

tests for:
object instanceof ClassName

–  It will return true if object is of type ClassName
–  In particular, it will return true if object is an

instance of any descendent class of ClassName

© 2006 Pearson Addison-Wesley. All rights reserved 8-26

A First Look at the clone Method

•  Every object inherits a method named
clone from the class Object
–  The method clone has no parameters
–  It is supposed to return a deep copy of the

calling object
•  However, the inherited version of the

method was not designed to be used “as is”
–  Instead, each class is expected to override it

with a more appropriate version

© 2006 Pearson Addison-Wesley. All rights reserved 8-27

A First Look at the clone Method

•  The heading for the clone method defined in the
Object class is as follows:
protected Object clone()

•  The heading for a clone method that overrides the
clone method in the Object class can differ
somewhat from the heading above
–  A change to a more permissive access, such as from

protected to public, is always allowed when overriding a
method definition

–  Changing the return type from Object to the type of the
class being cloned is allowed because every class is a
descendent class of the class Object

–  This is an example of a covariant return type.
•  (See testWidening in SalariedEmployee.java and

Employee.java.)

© 2006 Pearson Addison-Wesley. All rights reserved 8-28

A First Look at the clone Method

•  If a class has a copy constructor, the clone
method for that class can use a copy constructor to
create the copy returned by the clone method

public Sale clone()
{
 return new Sale(this);
}
 and another example:

public DiscountSale clone()
{
 return new DiscountSale(this);
}

© 2006 Pearson Addison-Wesley. All rights reserved 8-29

Pitfall: Sometime the clone Method
Return Type is Object

•  Prior to version 5.0, Java did not allow
covariant return types
–  There were no changes whatsoever allowed in

the return type of an overridden method
•  Therefore, the clone method for all classes

had Object as its return type
–  Since the return type of the clone method of the
Object class was Object, the return type of
the overriding clone method of any other class
was Object also

© 2006 Pearson Addison-Wesley. All rights reserved 8-30

Pitfall: Sometime the clone Method
Return Type is Object

•  Prior to Java version 5.0, the clone method for the
Sale class would have looked like this:
public Object clone()
{
 return new Sale(this);
}

•  Therefore, the result must always be type cast
when using a clone method written for an older
version of Java
Sale copy = (Sale)original.clone();

5/24/12	

6	

© 2006 Pearson Addison-Wesley. All rights reserved 8-31

Pitfall: Sometimes the clone Method
Return Type is Object

•  It is still perfectly legal to use Object as the
return type for a clone method, even with
classes defined after Java version 5.0
–  When in doubt, it causes no harm to include the

type cast
–  For example, the following is legal for the clone

method of the Sale class:
Sale copy = original.clone();

–  However, adding the following type cast
produces no problems:
Sale copy = (Sale)original.clone();

© 2006 Pearson Addison-Wesley. All rights reserved 8-32

Pitfall: Limitations of Copy Constructors

•  Although the copy constructor and clone
method for a class appear to do the same
thing, there are cases where only a clone
will work

•  For example, given a method badcopy in
the class Sale that copies an array of Sales
–  If this array of Sales contains objects from a

derived class of Sale(i.e., DiscountSale),
then the copy will be a plain Sale, not a true copy
b[i] = new Sale(a[i]); //plain Sale object

© 2006 Pearson Addison-Wesley. All rights reserved 8-33

Pitfall: Limitations of Copy Constructors

•  However, if the clone method is used instead of
the copy constructor, then (because of late binding)
a true copy is made, even from objects of a derived
class (e.g., DiscountSale):
b[i] = (a[i].clone());//DiscountSale object
–  The reason this works is because the method clone has

the same name in all classes, and polymorphism works
with method names

–  The copy constructors named Sale and DiscountSale
have different names, and polymorphism doesn't work with
methods of different names

© 2006 Pearson Addison-Wesley. All rights reserved 8-34

Introduction to Abstract Classes

•  In Chapter 7, the Employee base class and two of
its derived classes, HourlyEmployee and
SalariedEmployee were defined

•  Try adding the following method to the Employee
class. Note the error messages in Eclipse.
–  It compares employees to to see if they have the same

pay:
public boolean samePay(Employee other)
{
 return(this.getPay() == other.getPay());
}

© 2006 Pearson Addison-Wesley. All rights reserved 8-35

Introduction to Abstract Classes

•  There are several problems with this
method:
–  The getPay method is invoked in the samePay

method
–  There are getPay methods in each of the

derived classes
–  There is no getPay method in the Employee

class, nor is there any way to define it
reasonably without knowing whether the
employee is hourly or salaried

© 2006 Pearson Addison-Wesley. All rights reserved 8-36

Introduction to Abstract Classes

•  The ideal situation would be if there were a
way to
–  Postpone the definition of a getPay method until

the type of the employee were known (i.e., in the
derived classes)

–  Leave some kind of note in the Employee class
to indicate that it was accounted for

•  Java allows this using abstract classes and
methods

5/24/12	

7	

© 2006 Pearson Addison-Wesley. All rights reserved 8-37

Introduction to Abstract Classes

•  In order to postpone the definition of a
method, Java allows an abstract method to
be declared
–  An abstract method has a heading, but no

method body
–  The body of the method is defined in the derived

classes
•  The class that contains an abstract method

is called an abstract class

© 2006 Pearson Addison-Wesley. All rights reserved 8-38

Abstract Method

•  An abstract method is like a placeholder for
a method that will be fully defined in a
descendent class

•  It has a complete method heading, to which
has been added the modifier abstract

•  It cannot be private (see why?)
•  It has no method body, and ends with a

semicolon in place of its body

public abstract double getPay();
public abstract void doIt(int count);

© 2006 Pearson Addison-Wesley. All rights reserved 8-39

Abstract Class

•  A class that has at least one abstract
method is called an abstract class
–  An abstract class must have the modifier
abstract included in its class heading:

public abstract class Employee
{
 private instanceVariables;
 . . .
 public abstract double getPay();
 . . .
}

© 2006 Pearson Addison-Wesley. All rights reserved 8-40

Abstract Class

– An abstract class can have any number of
abstract and/or fully defined methods

–  If a derived class of an abstract class
adds to or does not define all of the
abstract methods, then it is abstract also,
and must add abstract to its modifier

•  A class that has no abstract methods
is called a concrete class

© 2006 Pearson Addison-Wesley. All rights reserved 8-41

Pitfall: You Cannot Create Instances of
an Abstract Class

•  An abstract class can only be used to derive
more specialized classes
–  While it may be useful to discuss employees in

general, in reality an employee must be a
salaried worker or an hourly worker

•  An abstract class constructor cannot be
used to create an object of the abstract
class
–  However, a derived class constructor will include

an invocation of the abstract class constructor in
the form of super. This allows initialization of
any instance variables of the abstract class.

© 2006 Pearson Addison-Wesley. All rights reserved 8-42

Tip: An Abstract Class Is a Type

•  Although an object of an abstract class
cannot be created, it is perfectly fine to have
a parameter of an abstract class type
–  This makes it possible to plug in an object of any

of its descendent classes
•  It is also fine to use a variable of an abstract

class type, as long is it names objects of its
concrete descendent classes only. Ex:

 Employee bob = new SalariedEmployee();
 . . .
 public abstract double getPay();

