Chapter 8

Polymorphism
y and Abstract

SAVITCH

ABSOLUTE
JAVA

Introduction to Polymorphism

 Inheritance allows a base class to be
defined, and other classes derived from it
— Code for the base class can then be used for its
own objects, as well as objects of any derived
classes
» Polymorphism allows changes to be made
to method definitions in the derived classes,
and have those changes apply to the
software written for the base class

©2006 Pearson Addison-Wesley. All ights reserved 83

Late Binding

» Java uses late binding for all methods
(except private, £inal, and static methods)

» Because of late binding, a method can be
written in a base class to perform a task,
even if portions of that task aren't yet
defined

* For an example, the relationship between a
base class called Sale and its derived class
DiscountSale will be examined

©2006 Pearson Addison-Wesley. All ights resarved 85

5/24/12

Introduction to Polymorphism

» There are three main programming
mechanisms that constitute object-oriented
programming (OOP)

— Encapsulation
— Inheritance
— Polymorphism

» Polymorphism is the ability to associate

many meanings to one method name

— It does this through a special mechanism known
as late binding or dynamic binding

©2006 Pearson Addison-Wesley. Al ights reserved 82

Late Binding

» The process of associating a method
definition with a method invocation is called
binding

If the method definition is associated with its
invocation when the code is compiled, that
is called early binding

If the method definition is associated with its
invocation when the method is invoked (at
run time), that is called /ate binding or
dynamic binding

©2006 Pearson Addison-Wesley. Al ights reserved 84

The Sale and DiscountSale Classes

* The sale class contains two instance
variables
- name: the name of an item (String)
- price: the price of an item (double)
It contains three constructors
— A no-argument constructor that sets name to
"No name yet", and priceto 0.0
— A two-parameter constructor that takes in a
String (for name) and a double (for price)
— A copy constructor that takes in a Sale object
as a parameter

©2006 Pearson Addison-Wesley. Al ights reserved 86

The Sale and DiscountSale Classes

* The sale class also has a set of accessors
(getName, getPrice), mutators (setName,
setPrice), overridden equals and toString
methods, and a static announcement method

¢ The Sale class has a method bill, that
determines the bill for a sale, which simply returns
the price of the item

* It has two methods, equalDeals and lessThan,
each of which compares two sale objects by
comparing their bills and returns a boolean value

©2006 Pearson Addison-Wesley. Al ights reserved 87

5/24/12

The Sale and DiscountSale Classes

* The DiscountSale class inherits the instance
variables and methods from the sale class

« In addition, it has its own instance variable,
discount (a percent of the price), and its own
suitable constructor methods, accessor method
(getDiscount), mutator method (setDiscount),
overriden toString method, and static
announcement method

* The DiscountSale class has its own bill
method which computes the bill as a function of the
discount and the price

©2006 Pearson Addison-Wesley. Al rights reserved 88

The Sale and DiscountSale Classes

* The sale class 1lessThan method
— Note the bill () method invocations:

public boolean lessThan (Sale otherSale)
{ if (otherSale == null)
! System.out.println("Error: null object");
System.exit (0) ;
1}return (bill() < otherSale.bill());
}

©2006 Pearson Addison-Wesley. Al ights reserved 89

The Sale and DiscountSale Classes

¢ The sale class bill () method:

public double bill()
{
return price;

}
¢« The DiscountSale class bill () method:

public double bill()

{
double fraction = discount/100;
return (1 - fraction) * getPrice();

}

©2006 Pearson Addison-Wesley. Al ights reserved 810

The Sale and DiscountSale Classes

» Given the following in a program:

Sale simple = new sale("floor mat", 10.00);
DiscountSale discount = new
DiscountSale ("floor mat", 11.00, 10);

if (discount.lessThan(simple))
System.out.println("$" + discount.bill() +
"< " 4+ "$" + simple.bill() +
" because late-binding works!") ;

— Output would be:

$9.90 < $10 because late-binding works!

©2006 Pearson Addison-Wesley. Al ights reserved 811

The Sale and DiscountSale Classes

* In the previous example, the boolean expression
in the if statement returns true

* As the output indicates, when the lessThan
method in the Sale class is executed, it knows
which bill () method to invoke
— The DiscountSale class bill () method for discount,

and the sale class bill () method for simple

* Note that when the sale class was created and
compiled, the DiscountSale class and its bill
() method did not yet exist
— These results are made possible by late-binding

©2006 Pearson Addison-Wesley. Al rights reserved 812

Pitfall: No Late Binding for Static
Methods

* When the decision of which definition of a
method to use is made at compile time, that
is called static binding
— This decision is made based on the type of the

variable naming the object

» Java uses static, not late, binding with
private, final, and static methods
— In the case of private and £inal methods,

late binding would serve no purpose

— However, in the case of a static method invoked
using a calling object, it does make a difference

©2006 Pearson Addison-Wesley. Al ights reserved 813

5/24/12

Pitfall: No Late Binding for Static
Methods

¢ The Sale class announcement () method:

public static void announcement()
{
System.out.println("Sale class");
}
¢ The DiscountSale class announcement ()
method:
public static void announcement()
{
System.out.println("DiscountSale class");

}

©2006 Pearson Addison-Wesley. Al rights reserved 814

Pitfall: No Late Binding for Static
Methods

* In the previous example, the the simple
(Ssale class) and discount
(DiscountClass) objects were created

+ Given the following assignment:

simple = discount;
— Now the two variables point to the same object

— In particular, a sale class variable names a
DiscountClass object

©2006 Pearson Addison-Wesley. Al ights reserved 815

Pitfall: No Late Binding for Static
Methods

+ Given the invocation:
simple.announcement() ;

— The output is:

Sale class

* Note that here, announcement is a static
method invoked by a calling object (instead
of its class name)

— Therefore the type of simple is determined by
its variable name, not the object that it
references

©2006 Pearson Addison-Wesley. Al ights reserved 816

Pitfall: No Late Binding for Static
Methods

» There are other cases where a static
method has a calling object in a more
inconspicuous way

For example, a static method can be
invoked within the definition of a nonstatic
method, but without any explicit class name
or calling object

* In this case, the calling object is the implicit
this

©2006 Pearson Addison-Wesley. Al ights reserved 817

The £inal Modifier

* A method marked £inal indicates that it
cannot be overridden with a new definition in
a derived class
— If £inal, the compiler can use early binding with
the method

public final void someMethod() { . . . }

* A class marked £inal indicates that it
cannot be used as a base class from which
to derive any other classes

» Can be used for efficiency, but usually more
for security.

©2006 Pearson Addison-Wesley. Al rights reserved 818

5/24/12

Late Binding with toString

« If an appropriate toString method is defined for a
class, then an object of that class can be output
using System.out.println

Sale aSale = new Sale("tire gauge", 9.95);
System.out.println(aSale) ;

— Output produced:

tire gauge Price and total cost = $9.95

» This works because of late binding

©2006 Pearson Addison-Wesley. Al ights reserved 819

Late Binding with toString

» One definition of the method println takes a
single argument of type Object:

public void println(Object theObject)
{
System.out.println(theObject.toString()) ;
}
— In turn, It invokes the version of println that takes a
String argument
Note that the println method was defined before
the sale class existed
« Yet, because of late binding, the tostring method
from the sale class is used, not the toString
from the Object class

©2006 Pearson Addison-Wesley. Al rights reserved 820

An Object knows the Definitions of its
Methods

* The type of a class variable determines
which method names can be used with the
variable
— However, the object named by the variable

determines which definition with the same
method name is used

» A special case of this rule is as follows:

— The type of a class parameter determines which
method names can be used with the parameter

— The argument determines which definition of the
method name is used

©2006 Pearson Addison-Wesley. Al ights reserved 821

Upcasting and Downcasting

« Upcasting is when an object of a derived class is
assigned to a variable of a base class (or any
ancestor class)

Sale saleVariable; //Base class
DiscountSale discountVariable = new

DiscountSale ("paint", 15,10); //Derived class
saleVariable = discountVariable; //Upcasting
System.out.println(saleVariable.toString())

« Because of late binding, toString above uses the
definition given in the DiscountSale class

©2006 Pearson Addison-Wesley. Al ights reserved 822

Upcasting and Downcasting

» Downcasting is when a type cast is performed from
a base class to a derived class (or from any
ancestor class to any descendent class)

— Downcasting has to be done very carefully
— In many cases it doesn't make sense, or is illegal:
discountVariable = //will produce
(DiscountSale) saleVariable;//run-time error
discountVariable = saleVariable //will produce
//compiler error

— There are times, however, when downcasting is
necessary, e.g., inside the equals method for a class:

Sale otherSale = (Sale)otherObject;//downcasting

©2006 Pearson Addison-Wesley. Al ights reserved 823

Pitfall: Downcasting

* Itis the responsibility of the
programmer to use downcasting only
in situations where it makes sense
— The compiler does not check to see if

downcasting is a reasonable thing to do

* Using downcasting in a situation that
does not make sense usually results in
a run-time error

©2006 Pearson Addison-Wesley. Al rights reserved 824

Tip: Checking to See if Downcasting is
Legitimate

» Downcasting to a specific type is only
sensible if the object being cast is an
instance of that type or one of its
descendant types.

— This is exactly what the instanceof operator
tests for:
object instanceof ClassName
— It will return true if object is of type ClassName
— In particular, it will return true if object is an
instance of any descendent class of C1assName

©2006 Pearson Addison-Wesley. Al ights reserved 825

5/24/12

A First Look at the clone Method

» Every object inherits a method named
clone from the class Object
— The method clone has no parameters
— It is supposed to return a deep copy of the
calling object
« However, the inherited version of the
method was not designed to be used “as is”

— Instead, each class is expected to override it
with a more appropriate version

©2006 Pearson Addison-Wesley. Al rights reserved 826

A First Look at the clone Method

* The heading for the clone method defined in the
Object class is as follows:

protected Object clone()

* The heading for a clone method that overrides the
clone method in the Object class can differ
somewhat from the heading above

— A change to a more permissive access, such as from
protected to public, is always allowed when overriding a
method definition

— Changing the return type from Object to the type of the
class being cloned is allowed because every class is a
descendent class of the class Object

— This is an example of a covariant return type.

* (See testWidening in SalariedEmployee.java and
Employee.java.)

©2006 Pearson Addison-Wesley. Al ights reserved 827

A First Look at the clone Method

« If a class has a copy constructor, the clone
method for that class can use a copy constructor to
create the copy returned by the clone method

public Sale clone()
{

return new Sale (this);
}

and another example:

public DiscountSale clone()
{
return new DiscountSale (this) ;

}

©2006 Pearson Addison-Wesley. Al ights reserved 828

Pitfall. Sometime the clone Method
Return Type is Object

* Prior to version 5.0, Java did not allow
covariant return types
— There were no changes whatsoever allowed in
the return type of an overridden method
« Therefore, the clone method for all classes
had Object as its return type
— Since the return type of the clone method of the
Object class was Object, the return type of
the overriding clone method of any other class
was Object also

©2006 Pearson Addison-Wesley. Al ights reserved 829

Pitfall. Sometime the clone Method
Return Type is Object

 Prior to Java version 5.0, the clone method for the
Sale class would have looked like this:

public Object clone()
{

return new Sale(this);
}

« Therefore, the result must always be type cast
when using a clone method written for an older
version of Java

Sale copy = (Sale)original.clone();

©2006 Pearson Addison-Wesley. Al rights reserved 830

Pitfall: Sometimes the clone Method
Return Type is Object

« ltis still perfectly legal to use Object as the
return type for a clone method, even with
classes defined after Java version 5.0
— When in doubt, it causes no harm to include the

type cast
— For example, the following is legal for the clone
method of the Sale class:
Sale copy = original.clone();
— However, adding the following type cast
produces no problems:
Sale copy = (Sale)original.clone();

©2006 Pearson Addison-Wesley. Al ights reserved

5/24/12

Pitfall: Limitations of Copy Constructors

« Although the copy constructor and clone
method for a class appear to do the same
thing, there are cases where only a clone
will work

» For example, given a method badcopy in
the class Sale that copies an array of Sales

— If this array of Sales contains objects from a
derived class of sale(i.e., DiscountSale),
then the copy will be a plain Sale, not a true copy

b[i] = new Sale(a[i]); //plain Sale object

©2006 Pearson Addison-Wesley. Al rights reserved

Pitfall: Limitations of Copy Constructors

* However, if the clone method is used instead of

the copy constructor, then (because of late binding)

a true copy is made, even from objects of a derived

class (e.g., DiscountSale):

b[i] = (a[i].clone());//DiscountSale object

— The reason this works is because the method clone has
the same name in all classes, and polymorphism works
with method names

— The copy constructors named Sale and DiscountSale

have different names, and polymorphism doesn't work with
methods of different names

©2006 Pearson Addison-Wesley. Al ights reserved

Introduction to Abstract Classes

* In Chapter 7, the Employee base class and two of
its derived classes, HourlyEmployee and
SalariedEmployee were defined

» Try adding the following method to the Employee
class. Note the error messages in Eclipse.

— It compares employees to to see if they have the same
pay:
public boolean samePay (Employee other)
{
return (this.getPay () == other.getPay());
}

©2006 Pearson Addison-Wesley. Al ights reserved

Introduction to Abstract Classes

* There are several problems with this

method:

— The getPay method is invoked in the samePay
method

— There are getPay methods in each of the
derived classes

— There is no getPay method in the Employee
class, nor is there any way to define it
reasonably without knowing whether the
employee is hourly or salaried

©2006 Pearson Addison-Wesley. Al ights reserved

©2006 Pearson Addison-Wesley. Al rights reserved

Introduction to Abstract Classes

» The ideal situation would be if there were a
way to
— Postpone the definition of a getPay method until
the type of the employee were known (i.e., in the
derived classes)
— Leave some kind of note in the Employee class
to indicate that it was accounted for
» Java allows this using abstract classes and
methods

Introduction to Abstract Classes

In order to postpone the definition of a
method, Java allows an abstract method to
be declared

— An abstract method has a heading, but no
method body

— The body of the method is defined in the derived
classes

* The class that contains an abstract method
is called an abstract class

©2006 Pearson Addison-Wesley. Al ights reserved 837

5/24/12

Abstract Method

» An abstract method is like a placeholder for
a method that will be fully defined in a
descendent class

« |t has a complete method heading, to which
has been added the modifier abstract

* |t cannot be private (see why?)

« It has no method body, and ends with a
semicolon in place of its body

public abstract double getPay() ;
public abstract void doIt(int count);

©2006 Pearson Addison-Wesley. Al rights reserved 838

Abstract Class

« A class that has at least one abstract
method is called an abstract class

— An abstract class must have the modifier
abstract included in its class heading:

public abstract class Employee
{
private instanceVariables;

public abstract double getPay();

}

©2006 Pearson Addison-Wesley. Al ights reserved 839

Abstract Class

— An abstract class can have any number of
abstract and/or fully defined methods

— If a derived class of an abstract class
adds to or does not define all of the
abstract methods, then it is abstract also,
and must add abstract to its modifier

A class that has no abstract methods
is called a concrete class

©2006 Pearson Addison-Wesley. Al ights reserved 840

Pitfall: You Cannot Create Instances of
an Abstract Class

« An abstract class can only be used to derive
more specialized classes
— While it may be useful to discuss employees in
general, in reality an employee must be a
salaried worker or an hourly worker
» An abstract class constructor cannot be
used to create an object of the abstract
class
— However, a derived class constructor will include
an invocation of the abstract class constructor in
the form of super. This allows initialization of
any instance variables of the abstract class.

©2006 Pearson Addison-Wesley. Al ights reserved 841

Tip: An Abstract Class Is a Type

» Although an object of an abstract class
cannot be created, it is perfectly fine to have
a parameter of an abstract class type

— This makes it possible to plug in an object of any
of its descendent classes

« Itis also fine to use a variable of an abstract

class type, as long is it names objects of its
concrete descendent classes only. Ex:

Employee bob = new SalariedEmployee() ;

public abstract double getPay();

©2006 Pearson Addison-Wesley. Al rights reserved 842

